
INTERNATIONAL JOURNAL OF ADVANCED STUDIES 
IN COMPUTER SCIENCE AND ENGINEERING                 
IJASCSE VOLUME 6 ISSUE 2, 2017 

02/28/2017 

  
 

WWW.IJASCSE.ORG 6 

 

Modeling, Riccati-Sylvester Decoupling and 

Digital Multiloop Control of 3-DoF Gimbaled 

Stabilizing Platform (Part-I)  

Faisal Mehmood, Tehreem Zahra, Zehera Batool, Arslan Arshad 

Department of Electrical Engineering 

COMSATS Institute of Information Technology 

Wah 47040, Pakistan 

 

Abstract—This article presents the design and control of a 3 

Degrees of Freedom (DoF) gimbaled stabilizing platform. The 

nonlinear system dynamics are modelled in the detail. The 

nonlinear quadruple of the system is simulated in MATLAB 

and is linearized using the Jacobian technique. The system 

order reduction is performed using Riccati-Sylvester 

transform. The decoupled system is simulated and a novel 

adaptive control algorithm is designed to regulate the position 

of the platform in 3-DoF. The experimental validation of the 

theoretically proposed controller is also presented by 

implementing the discrete time realization of the control 

algorithm using a digital controller interfaced in the real-time, 

using MATLAB/Simulink, in the Rapid Control Prototyping 

(RCP) mode of operation. The feasibility of the proposed 

design is theoretically and experimentally verified by its 

efficiency comparison with the classical techniques and 

satisfactorily stable closed loop responses. 
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stabilizing plateform; Rapid Control Prototyping; adaptive 

control 

I.  INTRODUCTION 

An inertial stabilized platform is one of the most 
important parts of modern tracking system. The areas of 
applications include but are not limited to defense, aerial 
photography, satellite imaging, industrial measurements etc. 
In platform stabilization system, the platform, where any 
desired object can be placed, is to be maintained at a fixed 
reference level although there is change in system dynamics 
and position [1]. A 3-Axis Gimbal structure is used to 
inertially stabilize a platform which can also be used to track 
a fixed or moving point in space with the help of other 
sensors [2].  

A lot of research work has been done owing to the 
importance of this system in the field and its challenging 
dynamic behavior to be controlled. However, the detailed 
modeling of this system, including the intricate geometric 
relations for the moment of inertia of gimbals, has not 
emphasized much in the literature. Secondly, the dynamics 

of the system are not only nonlinear but also coupled. 
Riccati-Sylvester differential equations have already been a 
topic of interest for the disturbance decoupling and optimal 
decentralized control problems [3]. They have also been 
successfully employed in the problems involving observer 
design [4,5], suboptimal tracking control [6] and nonlinear 
systems with mismatched uncertainties [7]. The real domain 
of application of Riccati-Sylvester differential equations is 
the Riccati-Sylvester transform that can be used to partially, 
fully or selectively decoupled a given dynamic system [8]. 
This work considers a procedure of Riccati-Sylvester 
transformation for selective decoupling of the system 
dynamics.  

Various control techniques have been implemented in the 
literature to stabilize a 3-DoF gimbal. Fuzzy logic has been 
implemented in [9]. Embedded sensor fusion and moving-
average filter based methodologies are employed in [10]. 
Self-Adaptive Fuzzy Control is used in [11]. Takagi-Sugeno 
fuzzy PD controller are used in [12]. We have presented a 
simpler procedure involving ARM-Cortex-M embedded 
processor and Matlab, to develop a Rapid Control 
Prototyping (RCP) platform to design and test a Multiloop 
digital control strategy. The resulting control algorithm is not 
only flexible, with respect to the available degrees of 
freedom in terms of tunable controller parameters, but also 
very reliable under external disturbances. 

In the part I of this research, a detailed nonlinear model 
of 3-DoF stabilizing platform will be developed, followed by 
linearization and simulation. 

II. EXPERIMENTAL SETUP 

A 3-DoF stabilizing gimbal platform is shown in Fig. 1. 

This physical setup consists of four parts  

1. The fixed frame (as a semi annular ring) is solidly 

coupled to the body frame, that in turn is fixed to 

some carrier e.g. missile, aircraft, sea-ship or ground 

vehicle etc. 

2. The outer gimbal (as full annular ring) is connected 

to the fixed frame through bearing at the points 
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1
P and

2
P , and it is solidly coupled to the shaft of 

gear DC motor 
1

M  at point
2

P . The stator of the 

motor is connected with screws to the fixed frame. 

3. The inner gimbal (as full annular ring) connected to 

the outer gimbal through bearing at the points 

3
P and

4
P , and it is solidly coupled to the shaft of the 

gear DC motor 
2

M  at the point
3

P . The stator of the 

motor is connected with screws to the outer gimbal. 

4. The stabilized platform (as a thin plate) is connected 

to the inner gimbal through the bearing at points 

5
P and

6
P , and it is solidly coupled to the shaft of 

gear DC motor 
3

M  at the point
5

P . The stator of the 

motor is connected with screws to the inner gimbal. 

A sensor assembly housing on the stabilized platform 

carries an Inertial Measurement Unit (IMU). Its contains 

three axis accelerometer, three axis gyroscope and three axis 

magnetometer with their signals fused using the extended 

Kalman filter to generate the Euler angles and the Euler 

rated, hence determining the attitude of the stabilized 

platform (e.g. roll, pitch and Yaw). 

 

 
Figure 1.  3-DoF gimbal platform hardware setup. 

III. SYSTEM DYNAMICS 

A. Frames of reference 

To describe the system dynamics, four frames of 
reference are required, given by: 

1. Body frameβ , defined by (
B

X ,
B

Y ,
B

Z ) axis. 

2. Outer Gimbal Frame ξ
ψ

, defined by (
ψ

X ,
ψ

Y ,
ψ

Z ) axis. 

3. Inner Gimbal Frame ξ


 defined by ( X


, Y


, Z

) axis. 

4. Stabilized Platform Frame 
θ
ξ , defined by (

θ
X ,

θ
Y ,

θ
Z ) 

axis. 
These frames of reference are related by standard 

rotational matrixes. 

B. Moment of inertia 

1) Stabilized platform moment of inertia 
The stabilized plate form in Fig. 1 can be considered as a 

thin plate as shown in Fig. 2. 

 
Figure 2.  The moment of inertia of a thin plate. 

The principle moments of inertia of the platform in
θ
ξ are 

given by, 
2

2

2 2

12

12

( ) 12

PX P

PY P

PZ P

I M a

I M b

I M a b











 

 

Translating these moments of inertia in β  we get,  

2

2 2 2

2 2 2 2 2 2

12

( sin ) 12

( (sin sin cos ) cos ) 12

B

B

B

PX P

PY P

PZ P

I M a

I M a b

I M a b



   



 

  

 

Since the Euler angles [   ]
T

    and the Euler rates 

[   ]
T

  & & & are defines in β , so we rename moment of inertia 

along body axis as, 

,   ,   
B B B

PX P PY P PZ P
I I I I I I

  
    

2) Inner gimbal moment of inertia 
The inner gimbal can be considered as an annular ring 

similar to one shown in Fig. 3. 
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Figure 3.  The moment of inertia of an annular ring. 

The moment of inertia in ξ


 and β  are given by, 

2

2

2

2

(sin 1) 2

B

B

IGX IGY IG i IGY IG

IGZ IG i

IGZ IG IG

I I M R I I

I M R

I M I

 








   



  

 

3) Outer gimbal moment of inertia 
The outer gimbal can also be considered as an annular 

ring similar to one shown above in Fig. 3. The moment of 

inertia in 
ψ
ξ  and β  are given by, 

2

2

2
B

OGZ OGY IG i OGZ OG

OGX OG i

I I M R I I

I M R

 




   


 

4) DC motor dynamics 
The electrical part of a PMDC motor, which is selected 

actuator, can be modeled as a series RL-back-EMF circuit 
along with the mechanical coupling as shown in Fig. 4 

The same model is used for three motors so in the following 

modeling equation we have in general , ,     and
m

 is 

back EMF constant and 


 is torque constant.    

-
m m m

d d
L R E

dt dt



   

 
       

 
Figure 4.  PMDC motor model. 

Rewriting above equation separately for three motors we 
get, 

1 1 1

2 2 2

3 3 3

-

-

-

m m m

m m m

m m m

d d
L R E

dt dt

d df
L R E

dt dt

d d
L R E

dt dt
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Figure 5.  3-DoF gimbal platform illustrative physical setup. 

 

5) Gimbaled platform Model 
The gimbaled platform dynamic equations, in the body 

frame β , are given by familiar Euler’s equations as, 

2

2

2

2

2

2

1
- -

1
- -

1
- -

P

P IG

P IG OG

d d d d
B

dt dt dt I dt

d d d d
B

dt dt dt I I dt

d d d d
B

dt dt dt I I I dt

 



 

 

 

  

   


   


   


 

  


 
 

 
 

 

 
 
 

 
 

 

 

 
Where with , ,     and, 

B


= frictional constant 


 =torque supplied by PMDC motors. 

d d

dt dt

 
=gyroscopic moment term during pitch 

d d

dt dt

 
= gyroscopic moment term during roll 

d d

dt dt

 
= gyroscopic moment term during yaw 

P
I I
 
 =Net moment of inertia for the pitch PMDC motor 

P IG
I I I
  
  = Net moment of inertia for the roll PMDC 

motor  

P IG OG
I I I I
   
   = Net moment of inertia for the yaw 

PMDC motor 
Rearranging the terms in the system dynamics (7) and 

(8), we get the complete non-linear system dynamic model 
as given, 
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d B d d d
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6) State-space nonlinear dynamics: 
We make the following state variable assignment to 

system (9), 

1 2 3 4 5

6 7 8 9

,     ,    ,     ,    

,   ,      

x x x x x

x x x x
  

    

   

    

   

& &

&
 

 
The input variables assignment is given by, 

1 2 3
,  ,  u E u E u E

  
     

 
The output variables assignment is given by, 

1 1 2 2 3 3

4 4 5 5 6 6

,   ,   ,

,   ,   

y x y x y x

y x y x y x

  

  
  

 
Using (10) through (12) in (9), we get, 

 

1 2

2 2 4 6 7

3 4

4 4 2 6 8

5

6 6 2 4 9

1 1

7 7 2 1
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8 8 4 2
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33

9 9 6 3

3 3 3

1

1

1
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x x

B
x x x x x

I I

x x

B
x x x x x

I I

x x

B
x x x x x

I I

R
x x x u

L L L

R
x x x u

L L L

R
x x x u

L L L



 



 



 

 

 

 

  

  

  



   



   



   

   

   

   

&

&

&

&

&

&

&

&

&
 

The non-linear system (13) can be represented by 
standard nonlinear system notation as, 

( , )x F x u&  

Output dynamics are linear in (12) and can be 
represented by, 

y Cx Du   

The values of various system constants in (13) and the 
gimbaled platform dimensions to be used in moment of 
inertia calculations are given in Table I. Here the subscript 
i , with the values 1. 2 and 3, represents parameters of the 

three PMDC motors that are identical and the angle   can 

be ,  or  . 

TABLE I.  VALUES OF SYSTEM PARAMETERS  

Parameter Value 

P
M  0.25Kg  

a  0.15m  

b  0.2m  

i
R  0.25m  

o
R  0.27m  

B


 0.002 Nm/ rad/ sec  

B


 0.004 Nm/ rad/ sec  

B


 0.006 Nm/ rad/ sec  

mi
R  4Ohm  

mi
L  0.007 H  
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Parameter Value 

mi
  0.5V/rad/sec  

 


  0.5Nm/A  

IG
M  0.5Kg  

OG
M  0.5Kg  

C. Nonlinear Simulation 

The system in (12) and (13) is implemented in Simulink 
in Fig. 6. The simulation results for step inputs to three 
motors, applied successively with delay, are shown in Fig. 7 
and Fig. 8. It is clearly evident that system has coupled 
dynamics as one input effects all other outputs. The Euler 
rates are stable due to back-EMF in motors, with the output 
amplitude values dependent on the input amplitude value, an 

attribute of a typical nonlinear systems. The Euler angles are 
unstable.  

A. Linearized State-Space dynamics: 

The Jacobian linearization (16) is applied to system (13). 

( , ) ( , )x u x uF F
x x u

x u

 
 

 
&   

Here 
F

x




is given by (17). Evaluating (17) at origin of 

state space and null input vector we get following linearized 
system dynamics (18). 

 

 
Figure 6.  Nonlinear system simulation in SIMULINK. 
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Figure 7.  Step responses for the nonlinear system Euler angles. 

 
Figure 8.  Step responses for the nonlinear system Euler rates. 
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1) Linear system simulation: 
The step responses of the linear MIMO system (18) are 

shown in Fig. 9. The roll, pitch and yaw dynamics are 
unstable as expected. The Euler rate dynamics are stable, 

owing to the presence of back-EMF stabilization in PMDC 
motor dynamics. Moreover, the nondiagonal structure of the 
state matrix reveals the presence of coupling in the system 
dynamics (18). 
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Figure 9.  Linear system step responses. 
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IV. DISCUSSIONS AND CONCLUSIONS 

In this part of the research work, we considered the 

detailed dynamics modeling of a 3-DoF gimbal stabilizing 

platform. The nonlinear system dynamics are simulated 

and linearized. The system dynamics are coupled and 

highly unstable. The further parts of this work will 

consider the Riccati-Sylvester differential transform to 

decouple the linear system dynamics derived here, 

followed by the control algorithm development to control 

the decoupled system. 
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