
INTERNATIONAL JOURNAL OF ADVANCED STUDIES
IN COMPUTER SCIENCE AND ENGINEERING
IJASCSE VOLUME 5, ISSUE 7, 2016

07/31/2016

WWW.IJASCSE.ORG 15

TECHNOMICS: APPROACH TOWARDS BEST

QUALIFIED COMPONENT

Vishnu Sharma

Faculty: School of Computer & Systems Sciences

Jaipur National University

Jaipur, India

Vijay Singh Rathore

Director:

Shri Karni College

Jaipur, India

Abstract— The focus of this paper is to suggest a method

which enhance the adaptability of available components.

This paper suggests an architecture which involves

traditional (Keywords based) and advanced techniques to

search a component. If still suitable component is not found

then and few changes in the architecture of component are

required, a user may suggest the changes. This response is

sent to server. Server lets this response to be implemented

based on some properties of the available component.

Improved component is verified with available models. If it

passes this verification step. A new qualified component is

made available to user to download. It can be downloaded

and implemented in user projects.

Keywords-component; formatting; style; styling; insert (key

words), MVC(Model View Controller), SQL(Structured Query

Language), Technomics Compiler, IA(Interface

Automata),reuse, Component Retrieval Technique (CRT),

Product Line Architecture(PLA), CBSE(Component Based

Software Engineering),SDLC(System Development Life Cycle)

I. INTRODUCTION

This approach is useful for the software developers to obtain

appropriate components to develop efficient software

without wasting lot time in developing from stretch and test.

It also provides flexibility to user to obtain the best suitable

component without going through large development process

of component at his own. An efficient way to retrieve

appropriate component from repository. The suggested

architecture effectively supports query specification and

component search. It further guides users to exploit

component resources for reuse.

In today’s scenario most of the Software Development firms

businesses are doing component based production. On the

same pattern to augment the productivity, quality and

efficiency of the software and reduce efforts done on testing

Component Based Software Engineering has taken its market

place. Components are piece of code which are ready to be

embedded in our software without worrying about the

failure. Developing any complex software from scratch is

expensive. Development and testing process of all

component is time consuming. If the development task is not

performed in a proper manner without testing in early stages

of SDLC, it may easily get out of control making it almost

impossible to debug and even more difficult to modify the

code when the code goes 100 KLOC or more. Still problem

to get the best qualified component is disquieting the

developers. In this paper a proposed architecture works to

provide the developers flexibility to convert the available

components in more qualified components.

II. SOFTWARE COMPONENT REPOSITORY

Software components enhances the capability of software

The software architecture is one of the main object

developed during the software life cycle [1] because it

determines most of the non-functional characteristics the

resulting software will have, and it is also one of the most

difficult documents to change once the software is deployed

[2]. Component-Based software engineering is the key

technology to cope with the requirements of high

productivity, low maintenance cost and reliability of

software products [6]. Software product lines are a trend for

planned colossal reuse of software assets [3]. The most

typical reusable assets are software components, but we can

also reuse the product line architecture (PLA), software

requirement documentation, and test cases, among others.

The PLA is an important reusable asset because all software

products in the family share the same design [4]. Therefore,

the PLA design should be carefully approached making sure

it will produce software that complies with the desired

requirements.

There are major steps identified to obtain a best qualified

component:

a) Search of relevant component from repository.

b) Testing of component for relevancy.

c) Suggest changes in the certain properties of the

software.

d) Implementation of suggested changes.

INTERNATIONAL JOURNAL OF ADVANCED STUDIES
IN COMPUTER SCIENCE AND ENGINEERING
IJASCSE VOLUME 5, ISSUE 7, 2016

07/31/2016

WWW.IJASCSE.ORG 16

e) Verification against certain available models.

f) Communicating the qualified component to

developer for downloading purpose.

Finding the component includes a major area of search

techniques and retrieval techniques. In this research paper we

will try to provide a framework to get best qualified

component involving flexibility to modify component up to

certain level..

III. COMPONENT RETRIVAL TECHNIQUES(CRT)

a) Few traditional approaches to get best qualified

component are :

b) Keyword search requires assigning to each object a

number of relevant keywords or indices [5].

c) Full-text Retrieval : when a person wants

information from that stored collection, the

computer is instructed to search for all documents

containing certain specified words and word

combinations, which the user has specified [5].

d) Hypertext Search: The basic building blocks in

hypertext are nodes and links. Each node is

associated with a unit of information, and nodes can

be of different types[5].

e) Enumerated classification: Enumerated

classification uses a set of mutually exclusive

classes, which are all within a hierarchy of a single

dimension [6].

f) Attribute value: The attribute value classification

scheme uses a set of attributes to classify a

component [6].

g) Faceted: Faceted classification schemes are

attracting the most attention within the software

reuse community [6, 7].

h) Signature matching : Consider the signatures

presented in Figures 1 and 2 for a stack of integers

and a queue of integers, respectively [8]

IV. TECHNOMICS : ARCHITECTURE

There are four modules that contains with our prototype

system implementation, see Figure 1, these are:

i. User Interface

ii. Database

iii. Technomics, and

iv. Check Authenticity

Figure 1: System Modules

Web interface is a medium through which the user interacts

with the system. A representative use of Figure 1: The

System Modules are as follows:

1. The user gets a list of components by searching it

using keyword. The list of candidate components is

displayed according to typed keyword.

2. The specifications of the candidate components are

displayed and the requirement specifications can be

modified accordingly.

3. The requirement specification of component

repository is uploaded by the user. That required

specification is combined with each candidate

component specification and the TECHNOMICS

translator is called to translate the combined

TECHNOMICS specification to the models in some

existing formal language.

4. The relevant model checking tools are called by the

system to check whether the component requires

behaviour.

Figure 2: Implementation of Technomics

In our prototype system, the TECHNOMICS translator is

executed in .Net MVC. The web interface is implemented by

.Net Framework which is running on SQL and is used to

build the sample component repository.

Technomics

Translator

Lang. 1
Lang. 1 Validation

tools Applied

Component with

relevant property

For Lang. 1

Component with

relevant property

For Lang. 2

INTERNATIONAL JOURNAL OF ADVANCED STUDIES
IN COMPUTER SCIENCE AND ENGINEERING
IJASCSE VOLUME 5, ISSUE 7, 2016

07/31/2016

WWW.IJASCSE.ORG 17

Figure 3: TECHNOMICS Translator

V. TECHNOMICS TRANSLATOR

The functioning of TECHNOMICS Translator is in such a

way that the compiler of TECHNOMICS is fed with

TECHNOMICS specifications. Using the help of various

language plugins, complier translates the specifications of

TECHNOMICS into existing formal languages, such as

Master Admin (MA), C# [9], Interface Automata (IA) [10],

etc. The translated formal models are entered to their

accompanying checking tools. Following Figure 2 displays

such kind of workflow. Following advantages contains with

such design:

 To check the component compatibility, usually

model checking tools can be used. A single

TECHNOMICS specification is sufficient and can

be reused with the variety of tools. If any new and

more powerful tool becomes accessible, it is only

needed to write a code generator to use within our

framework.

 Component developers and users are free to

exchange components and requirement description

in TECHNOMICS without any tension about which

checking tools that they are applying.

The prototype is assembled with plug-ins to support Master

Admin and C# at the moment. These two tools have been

selected to demonstrate the feasibility and applicability of

our architecture.

VI. COMPILER

The compiler of TECHNOMICS is executed with the help of

an open architecture. It authorizes several language modules

to plug into the compiler. This enables the compiler to

translate TECHNOMICS to other languages without

recompilation of the compiler’s source code. It is

implemented in layers, see Figure 3.

In TECHNOMICS the combined specification comprises

three parts:

i. Master Admin

ii. User Admin (Environment Components) and

iii. Agent (User Requirements)

Since different grammar rules apply for different parts, we

use separate classes to grip grammar checking and make

separate tables for each part. The tables contain symbol

tables and rule tables. A “Symbol table” is a common data

structure where every symbol present in the source code and

is used by compiler is related with the information like type

or scope level. A “Rule table” stores the rules related to

different services that the component provides.

A common translation layer is present at the top of grammar

checking. Its key task is to identify the different portions of

the specification, and allot a relevant grammar-checking

module to that part. Thereafter, a list of symbol and rule

tables is generated which meets to the level of standard

compilation process. A number of code generators is

supported by TECHNOMICS framework. To load a plug-in

class, the plug-in manager is called by the compiler and the

plug-in class takes those intermediary tables as inputs and

produces the translation for the plug-in language.

Figure 4: Layers of Compiler Implementation

VII. DEVELOPING PLUG-INS

 Making enable plug-ins has given users flexibility

to deal with a diversity of modelling languages.

While developing the TECHNOMICS compiler

plug-ins, following steps was followed:

 Defines the mapping from the tables to the language

which is supported by plug-in.

 Encompassing the common translation layer class

to create the intermediate symbol tables and rule

tables. All available plug-ins have the same tables.

 A plug-in property file is written and the Plugin

Manager class locates it and load the plug-in at

runtime.

INTERNATIONAL JOURNAL OF ADVANCED STUDIES
IN COMPUTER SCIENCE AND ENGINEERING
IJASCSE VOLUME 5, ISSUE 7, 2016

07/31/2016

WWW.IJASCSE.ORG 18

Fig 5: System Flowchart

Therefore it is imaginable to add support to various

languages as long as the corresponding plug-ins is executed.

However, before picking up a language, some concerns need

to be considered, as: whether the transition system is

explained; whether a matching theory is present to check

compatibility of component. Once the selection of language

is completed, then the major task is begun to define the

mapping from TECHNOMICS to that language.

We have executed the plug-ins for C#. Both of them can be

used to explain transition systems, although C# essentials to

import the additional linear ordering module. For both tools,

testing component compatibility is to test whether the

composition of the two components have any prohibited

behaviors. The component composition is directly supported

by C# such as Component 1 or Component 2. A transition

system in TECHNOMICS is decided by the guidelines of the

services.

In the TECHNOMICS, input ports are read-only, but output

ports can be altered. MA has a similar rule on the interface

ports, therefore the translation from TECHNOMICS to MA

is direct. C# does not have the idea of ports, supposing all the

variables are writable. Therefore in C#, there is no necessity

to declare variables as input or output.

The scenarios and properties can be described to check it in

requirement specification. Scenarios could only be

interpreted to MA which supports monitor automata and can

implement along with the component. Properties are

transferable to different assertions which is supported by

both MA and C#.

VIII. COMPONENT REPOSITORY

There are two databases in the component repository:

- User Database: This database has all the

information about the registered users of the

repository, like as their usernames, passwords,

contact details, etc. Again the users are classified as

component users and component developers.

- Other Database: The name of component, its

category, keywords used to describe the component

and TECHNOMICS specification are stored in this

database.

- Each component is also associated with a

component developer.

 WEB INTERFACE

Different user interfaces are applied for both component

developers and users. Through this web interface, the system

permits developers to add components, including specifying

components in TECHNOMICS. The requirement can be

uploaded by users and the system match components based

on the requirement specification.

Fig. 5 depicts how the web interface can be used by the users

and developers. A user searches components by inserting

keywords and the components having some of the keywords

from the inserted ones will be retrieved as candidate

components for further behavioral specification matching.

Figure 6: Use Case through Web Interface

The TECHNOMICS compiler compares candidate

component specification and requirement specification.

According to that parsing, it retrieves all the names, values,

INTERNATIONAL JOURNAL OF ADVANCED STUDIES
IN COMPUTER SCIENCE AND ENGINEERING
IJASCSE VOLUME 5, ISSUE 7, 2016

07/31/2016

WWW.IJASCSE.ORG 19

variables and services. If there is no parsing error, then the

user is lead to where name mapping could be done.

Name mapping is not needed when the requirement

specification is changed according to the component

specification. However, the name mapping module is useful

in checking the syntax of both specifications. Thereafter, the

requirement specifications join with each candidate

component specification.

The system chooses which language it should be interpreted

to by testing if there are situations defined. If so, the

collective specification will be interpreted into C#. However,

if the properties are defined in the specification, it will be

translated to both MA and C#. If it translates to C#, the

scenario definition is ignored. The properties that are not

sustained by both tools will be also ignored by the

interpreter.

In the background, the system will run the model checkers.

Therefore checking the model is transparent to the

component user. In order to complete that, Java scripts is

used for checking. For C#, the command interface of C#

Analyzer is raised. On the basis of model checkers, the

system displays whether the candidate components have

required behavior.

FUTURE WORK

Our future work can be carried out in the following four

directions:

 This chapter expresses the architecture and thorough

implementation of our prototype component selecting

system based on checking the behavioral compatibility.

Presently, it only supports conversion to C# and some

requirement specification work which can be done

manually. There is some more future work where we

can work upon like as adding more tools support, such

as Ticc[11], and automatic tool selection becomes an

issue.

 Since our approach has not achieved absolute

automation due to the modeling unpredictability from

people to person, somehow few manual work to

accommodate user requirements is required when using

our proposed prototype system. We will try to resolve

this issue by defining a formal transformation from one

model to another. On the Basis of this definition, all the

models can be integrated.

 As the number of the model checking tools used in our

proposed framework increase, it is mandatory to apply a

trigger that will be able to automatically decide on the

proper tools for checking component behavioral

compatibility, as different available tools have their own

features and support for checking different properties of

component.

REFERENCES

[1] Martin Fowler. Who Needs an Architect? IEEE Software,

20(5):1H3, 2003.

[2] Len Bass, Paul Clements, and Rick Kazman. Software

Architecture in Practice.SET Series in Software Engineering.

Addison-Wesley, 2 edition, 2003.Immense

[3] Paul Clements and Linda M. Northrop. Software Product

Lines: Practices and Patterns. Addison Wesley, first edition,

August 2001.

[4] Jan Bosch. Design and Use of Software Architectures.

Adopting and Evolving a Product Line Approach. Addison

Wesley, first edition. May 2000.

[5] Tomas isakowitz and Robert j. Kauffman “Supporting

search for reusable software objects. Center for Digital

Economy Research Stern School of Business Working Paper

IS-93-47

[6] Dr C.v.guru Rao and P.Niranjan “An Integrated

Classification Scheme for Efficient Retrieval of

Components”. Journal of Computer Science 4 (10): 821-

825, 2008 ISSN 1549-3636 © 2008 Science Publications

[7] P.Niranan and Dr.c.v.GuruRao. “A mock-up tool for

software component reuses Repository”

[8] Rajender Nath, Harish Kumar; Building Software Reuse

Library; 3rd International Conference on Advanced

Computing and Communication Technology- ICACCT-08;

Asia Pacific Institute of Information Technology, Panipat ,

India; November 08-09, 2008, pp. 585-587.

[9] Hsinchun Chen and Kevin J. Lynch, “Automatic

Construction of Networks of Concepts Characterizing

Document Database,” IEEE T. Systems, Man, and

Cybernetics 22 (5) (1992) 885-902.

[10] Haines, G., Carney, D. and Foreman, J, Component

Development / COTS Integration, Software Technology

http://www.sei.cmu.edu/str/descriptions/cbsd_body.html.,

1[18] Harmon, P., Components, Component Deve Strategies,

Vol. 8, No. 7, July 1998.

[11]Seacord, R., Hissam, S., Wallnau, C., Agora: A Search

Engine for Software Components, CMU/SEI-98-TR-011,

August 1998.

