
INTERNATIONAL JOURNAL OF ADVANCED STUDIES IN
COMPUTER SCIENCE AND ENGINEERING
IJASCSE VOLUME 5, ISSUE 5, 2016

05/31/2016

WWW.IJASCSE.ORG 6

Evaluating the various CPU scheduling algorithms on the

basis of Simulation made in C++

Vaibhav Kant Singh

Department of Computer Science and Engineering

Institute of Technology, Guru Ghasidas Vishwavidyalaya,

Central University, Koni, Bilaspur, Chhattisgarh, India

 Abstract – One goal of Operating System is to use the

Computer Hardware/Resource in an efficient manner. Since CPU

is a resource it should be utilized efficiently. To achieve high

degree of CPU utilization Scheduling algorithms are

implemented by operating system. In this paper we will see

comparison between the various CPU scheduling algorithms on

the basis of the simulation made in C++. The performance was

tested on same workload. The paper also gives a brief

introduction of the basic evaluation techniques used for the CPU

scheduling algorithms. Simulation is made of First Come First

Serve (FCFS), Shortest Job First (SJF), Priority Scheduling and

Round Robin (RR) Scheduling in C++. Also for assessing the

performance of the algorithms they are also implemented in

Code block. Beside the above algorithms working of Improved

Round Robin Scheduling, Highest Response Ratio Next (HRRN),

Virtual Round Robin Scheduling, Multilevel Queue Scheduling,

Multi-level Feedback/ Adaptive Queue Scheduling, Fair-share

Scheduling and Lottery Scheduling are discussed.

 Index Terms – CPU scheduling, First Come First

Serve(FCFS), Shortest Job First(SJF), Priority, Round Robin(RR),

I. INTRODUCTION

 A Computer is an Electronic device that accepts data

processes it and gives the output in a desired manner. Since

computer is an electronic device it understands only logic of

0’s and 1’s. To achieve this concept of Software and Program

came. A program is a set of instruction in a specific sequence

to perform a specific objective. Whereas Software is basically

set of instruction group into programs that make the Computer

to function in the desired manner. Software can be classified

into Pre-Written Software and Custom made Software. Pre-

Written Software could be further classified into Application

and System. Operating System for which is going to use CPU-

Scheduling is a type of System Software. System Software is

software that is meant to operate the hardware of a computer

and to provide and maintain a platform for application running

software. Operating System is thus system software that acts

as an intermediary between a user of computer and the

computer hardware. The major purpose of OS is to provide an

environment in which a user can execute programs. Some OS

system structures include Monolithic, Layered, Client-Server,

Virtual Machine, and Exo-Kernel respectively. The basic

components of OS are Process Management, Main Memory

Management, File Management, I/O System Management,

Secondary Storage Management, Networking, Protection and

Command Interpreter System. The services provided by OS

are I/O operations, Program Execution, File-System

Manipulation, Communications, Error Detection, Resource

Allocation, Accounting and Protection. The basic functions of

OS are Memory Management, Processor Management, Device

Management and File Management. Operating System could

have various classifications like Real-time(Hard and Soft),

Multiprogramming, Time sharing, Multiprocessor, Batch etc.

Examples of OS are Microsoft Windows family of OS

(Windows 7, Windows 8, Windows XP etc.), UNIX family of

OS which is having two classifications namely UNIX or

UNIX system-like(LINUX Ubuntu, Fedora, Redhat etc.) etc.

In system of the yester years the system was dedicated to

process one program at one time. But now scenario has

changed, we are entertaining multiple processes at the same

time. This require construct to implement, here came the

concept of process. Process is a program in execution. It is an

instance of a program. Process is the unit of work done in

modern time sharing operating system. Process is represented

in the OS by a Process Control Block (PCB) which contains

several information which are dynamic, and because of which

process is called an active entity. Process is basically the

element which is going to be considered by the CPU for

execution. A point to be noted is that until and unless the

process component which is supposed to be executed is in

memory it can’t be executed. The List of processes that are

ready for execution, are kept in a list called ready queue.

During the process lifetime it goes through various states New

(When a process is newly admitted), Ready (When the process

attains the resources it desires for its execution and is placed in

the ready queue), Waiting (When a process is waiting for an

INTERNATIONAL JOURNAL OF ADVANCED STUDIES IN
COMPUTER SCIENCE AND ENGINEERING
IJASCSE VOLUME 5, ISSUE 5, 2016

05/31/2016

WWW.IJASCSE.ORG 7

event completion or waiting for an execution from the I/O

device), Running (When a process is having processor

allocation and is running) and Terminated (When process

completes its execution). As already discussed that one goal of

OS is to have efficient resource utilization, since the speed of

CPU is in nanoseconds the time could be used productively by

enabling the concept of Multiprogramming.

In this paper total XI sections are there excluding

references. In section I a brief introduction to the Operating

System is given. In section II the problem statement is given,

the problem for which the research is made is given. In section

III Literature survey of the various methodologies in the

Operating System domain for the purpose are discussed. In IV

the basic CPU scheduling concepts are discussed. In section V

the scheduling criteria used for making assessment of the CPU

scheduling algorithm is discussed. In section VI the basic

evaluation methods utilized for assessing the performance of

CPU scheduling algorithm is given. In section VII the basic

working of the algorithms by means of deterministic modeling

is explained(Gantt chart used). In section VIII snapshots of the

algorithms implemented in Turbo C++ is given. In section IX

Experiment carried out on Code block and Turbo C++ which

gave results on various scenarios is discussed by means of

Tables. In section X the results generated by means of the

Experiment done in expressed by means of Graph. In section

XI the conclusion of the research work is discussed.

II. PROBLEM STATEMENT

 The objective of Multiprogramming is to keep the CPU

busy at all time. In a uniprocessor system at one time only one

process is suppose to execute. The remaining processes are

supposed to wait. As the process is able to have the resources

required for its execution, and is having processor allocation it

will start executing. During execution it may acknowledge

various events one of which could be occurrence of a request

for an I/O device. When this type of request from the process

arrives in simple Computer System the system will sit idle for

the time I/O operation is accomplished by the Process. Now,

as already discussed the objective of OS is to keep efficient

utilization of the resource which is hampered in the above

case. This gave rise to the notion of CPU scheduling which

enables selection of a process from the ready queue to make

the efficient utilization of CPU. CPU scheduling is done by a

construct called CPU scheduler or Short-term scheduler.

Short-term name is given on the basis of frequency of calling

time.

III. LITERATURE SURVEY

 In [1] the dilemma is addressed where the

Implementability of threads to achieve parallelism is not

satisfactorily achieved. In [2] notion of concurrent

programming is presented some approaches regarding the

usage of important language notation for representation of

concurrency is addressed. In [3] the authors had made a study

on the problem of efficiently scheduling fully strict

multithreaded computations on parallel computers. In [4]

Coordinated thread scheduling is discussed as a critical factor

in achieving good performance for tightly coupled parallel

jobs on Workstation clusters. In [5] Surplus Fair scheduling

(SFS), a proportionate share, CPU scheduler designed for

symmetric processor is proposed. In [6] BVT Borrowed

Virtual Time Scheduling is proposed, showing that it provides

low-latency for real-time and interactive applications yet

weighted sharing of the CPU across applications according to

system policy. In [7] performance of Multiprogramming

systems is made. In [8] the SDC time sharing system is

revisited. In [9] a fair share scheduler is proposed. In [10]

solution of a problem in concurrent programming control is

discussed.

IV. CPU SCHEDULING CONCEPTS

 During the process life time it toggles between two states

either it is engaged in doing some operation using CPU or

engaged in doing some I/O operation. Cycle of CPU-execution

is called CPU burst and Cycle of I/O execution is called I/O

burst. During execution the first and last cycle is CPU-burst.

There are four conditions which may be acknowledged during

the execution of a process:-

 1) Process switches from running state to waiting state.

 2) Process switches from waiting state to ready state.

 3) Process switches from running state to ready state.

 4) Process terminates

In 1 and 4 definitely new selection will be made. But in 2 and

3 forceful deallocation of CPU make take place. If scheduling

it takes place only under 1 and 4 it is called non preemptive

otherwise it is preemptive. Another important point that must

be noted is that CPU-scheduler merely makes selection of the

process for allocation of CPU. Physical allocation is made by

dispatcher. Dispatching requires three events i.e. Context

switching, Switching to user mode and restarting process from

an appropriate location.

V. CPU SCHEDULING CRITERIA

 CPU scheduling criteria can be classified into two

categories namely user based and system based. A user based

includes Turnaround time, Waiting time, Response time,

Predictability and Deadlines. System based include

Throughput, CPU utilization, Fairness and Balance.

A. User Based

 1) Turnaround time: The time elapsed between the time

of submission to its completion.

 2) Waiting time: The time the process spends waiting in

the ready queue.

INTERNATIONAL JOURNAL OF ADVANCED STUDIES IN
COMPUTER SCIENCE AND ENGINEERING
IJASCSE VOLUME 5, ISSUE 5, 2016

05/31/2016

WWW.IJASCSE.ORG 8

 3) Response time: The time from process submission to

the first response.

 4) Predictability: This is based on the assessment made by

the human mind for the amount of time a process may take for

its execution.

5)Deadlines: In real-time systems the process are

supposed to be completed in rigid time constraint. Thus

deadlines achievability could be criteria for making a

comparison between algorithms that imposes deadlines in their

operations.

B. System Based

 1) Throughput: The number of processes completed in

unit time, where unit time may be sec, minutes, hours etc.

 2) CPU Utilization: It is the percentage of time for which

the CPU was engaged in doing work.

 3) Fairness: Every process must be entertained is the

policy of this criterion.

 4) Balance: A good balance of I/O bound and CPU bound

processes while execution.

VI. EVALUATION METHODS FOR CPU SCHEDULING

 There are four basic techniques which are used to make an

assessment of the CPU Scheduling algorithm. The Techniques

are Deterministic Modeling, Queuing Models technique,

Simulation and Implementation. The first technique is the one

where using mathematical formulation for a given snapshot

the different scheduling algorithms are assessed. In the first

technique Gantt chart is first prepared and on the basis of the

chart formed the calculations are made for the criteria defined

above. In the second technique Computer is viewed as a

network of servers providing various resources to the users.

Since CPU is a resource and has to provide services with the

help of queues. Little’s formula is announced for calculating

the Waiting time for a given scheduling algorithm. In the third

technique we will make simulation of the given CPU

scheduling algorithm in the language we desire and then carry

out experiments on the simulated software for different

workload. This is the most cost effective approach utilized for

making evaluation of performance of the CPU scheduling

algorithm. The fourth technique is the most costly and the

most accurate one. In this approach we implement the

algorithm and then deploy it into the operating system as a

CPU scheduling algorithm and then test the performance made

by the system. The above criteria’s are tested to obtain the

comparison between the algorithms. Since, construction of

CPU scheduling algorithm for deployment require

consideration of additional constraints which deal with the

practical aspect of execution thus more effort and cost is

required for its construction.

VII. WORKING OF SOME EXISTING CPU-SCHEDULING

ALGORITHMS

 In FCFS the process which arrives first get the CPU

allocation first. It is a non-preemptive scheduling algorithm.

SJF is algorithm that considers the process for scheduling

which is having the least value for next CPU-burst. It is both

preemptive and non-preemptive. Priority Scheduling considers

the process which is having the highest priority as the process

for CPU allocation. It is both preemptive and non-preemptive.

Round Robin is used to give fast response to the user. It does

that by executing each process for a time slice. It is

preemptive scheduling algorithm. In Improved Round Robin

Scheduling the policy that is generally adopted is to schedule a

process if its CPU consumption ratio is greater than 0.60, else

schedule a process whose CPU consumption ratio is

minimum. In Highest Response Ratio Next Scheduling that

process will be scheduled which has the highest response

ratio. In Virtual Round Robin Scheduling along with ready

queues auxillary queues are utilized to serve the I/O bound

processes in better fashion. In Multilevel queue scheduling the

ready queue is partitioned into various groups of queues and

the processes on the basis of the properties that they exhibit

are destined to the respective queues. The Individual queues

are scheduled using the basic approaches namely FCFS, SJF,

Priority, RR. Between the queues the scheduling policy is

Preemptive Priority. In Multilevel queues there may be

problem of starvation. In Multilevel feedback queue the

processes are allowed to move between the queues. This

removes the starvation problem acknowledged in the previous

case to a wide extent. In Fair-share scheduling algorithms the

needs of a user or group of users is considered and processor

time is distributed not among the individual processors, but

among the users or group of users as the case may be. Lottery

scheduling is scheduling is another mechanism which is based

on lottery tickets. Every user is provided tickets based on their

required share of processor execution. When there is need to

perform scheduling, a lottery is held by executing a program

for generating a random number from the set of tickets

provided to all users. The user holding the winning ticket is

allowed to execute. Below we will see the analytic evaluation

of the CPU-Scheduling algorithms namely FCFS, SJF (non-

preemptive and preemptive), Priority (non-preemptive and

preemptive) and Round Robin (Time Slice-2msec). While

solving Priority scheduling assumption made is lower number

in priority assumes higher priority. We know that for analytic

evaluation we require Gantt chart which is a pictorial

representation of the manner in which the allocation of CPU

took place for the various processes according to the CPU

scheduling policy. Below we are having TABLE I which

represent a snapshot for which we will be making an analytic

evaluation.

INTERNATIONAL JOURNAL OF ADVANCED STUDIES IN
COMPUTER SCIENCE AND ENGINEERING
IJASCSE VOLUME 5, ISSUE 5, 2016

05/31/2016

WWW.IJASCSE.ORG 9

Fig. 1 Flowchart Chart for FCFS

The working of the algorithms is shown by means of

Flowchart. In this section we show the four Flowcharts by

means of figures Fig. 1, Fig. 2, Fig. 3 and Fig. 4. The four

basic algorithms follow different policies for allocation of

CPU. Also where FCFS is non-preemptive, SJF and Priority

can be both Preemptive and non-preemptive whereas Round

Robin in Preemptive having the selection process carried by

the policy that the process at the top of the FIFO queue

(Representing the Ready Queue) is used. FCFS is a fair policy

and gives the first opportunity of execution to the process that

arrived first. FCFS suffers from Convoy effect. SJF selects the

process that is having the least value for the next CPU burst.

SJF is a special case of Priority Scheduling.

Fig. 2 Flowchart Chart for SJF(Non Preemptive)

Fig. 3 Flowchart Chart for Priority(Non Preemptive)

INTERNATIONAL JOURNAL OF ADVANCED STUDIES IN
COMPUTER SCIENCE AND ENGINEERING
IJASCSE VOLUME 5, ISSUE 5, 2016

05/31/2016

WWW.IJASCSE.ORG 10

Fig. 4 Flowchart Chart for ROUND ROBIN

TABLE I

SNAPSHOT OF WORKLOAD ASSIGNED FOR MAKING VALUATION OF

SCHEDULING ALGORITHMS FCFS, SJF, PRIORITY AND ROUND ROBIN

Process Arrival Time in msec CPU Burst Time in msec Priority

P1 0 3 3

P2 1 7 1

P3 4 2 2

P4 6 4 2

Fig. 5 Gantt Chart for FCFS

Fig. 6 Gantt Chart for SJF (Non preemptive)

Fig. 7 Gantt Chart for SJF (Preemtive)

Fig. 8 Gantt Chart for Priority (Non Preemptive)

Fig. 9 Gantt Chart for Priority (Preemptive)

Fig. 10 Gantt Chart for Round Robin Scheduling (Time Slice 2 msec)

TABLE II

ATAT FOR THE ALGO’S WHOSE GANTT CHART IS GIVEN ABOVE

ALGORITHM TAT OF

P1
TAT OF

P2
TAT OF

P3
TAT OF

P4
ATAT

FCFS 3 9 8 10 7.5

SJF (NON

PREEMTIVE)

3 9 8 10 7.5

SJF

(PREEMTIVE)

3 15 2 4 6

PRIORITY

(NON

PREEMTIVE)

3 9 8 10 7.5

PRIORITY

(PREEMTIVE)

16 7 6 8 9.25

ROUND

ROBIN
5 15 3 9 8

INTERNATIONAL JOURNAL OF ADVANCED STUDIES IN
COMPUTER SCIENCE AND ENGINEERING
IJASCSE VOLUME 5, ISSUE 5, 2016

05/31/2016

WWW.IJASCSE.ORG 11

TABLE III
AWT FOR THE ALGO’S WHOSE GANTT CHART IS GIVEN ABOVE

ALGORITHM WT OF P1 WT OF P2 WT OF P3 WT OF P4 AWT

FCFS 0 2 6 6 3.5

SJF (NON

PREEMTIVE)
0 2 6 6 3.5

SJF

(PREEMTIVE)

0 8 0 0 2

PRIORITY

(NON

PREEMTIVE)

0 2 6 6 3.5

PRIORITY

(PREEMTIVE)

13 0 4 4 5.25

ROUND

ROBIN

2 8 1 5 4

 For making an evaluation through analytic model we will

be making a calculation of Average Turn Around Time

(ATAT), Average Waiting Time (AWT) and Average

Response Time (ART). TABLE II, TABLE III and TABLE IV

show the comparison of the values produced by the algorithms

using analytical model. In the TABLES TAT represents Turn

Around Time, WT represent Waiting Time and RT represents

Response time. It is important to note that the values present

in the TABLES are generated from the formulation that we

discussed in Section V. Analytic model requires manual

approach for every snapshot the full mathematical calculation

is supposed to be made. Also it does not consider various

practical aspects acknowledged in the working environment.

TABLE IV

ART FOR THE ALGO’S WHOSE GANTT CHART IS GIVEN ABOVE

ALGORITHM RT OF P1 RT OF P2 RT OF P3 RT OF P4 ART

FCFS 0 2 6 6 3.5

SJF (NON

PREEMTIVE)

0 2 6 6 3.5

SJF

(PREEMTIVE)
0 2 0 0 0.5

PRIORITY

(NON

PREEMTIVE)

0 2 6 6 3.5

PRIORITY

(PREEMTIVE)

0 0 4 4 2

ROUND

ROBIN
0 1 1 3 1.25

VIII. SIMULATION IN C++

 In this research paper we had made simulation of

algorithms FCFS, SJF, Priority and Round Robin is made in

C++. It is assumed that all processes arrive at the same time.

The snapshots of the Algorithms are given in the section. All

the simulations made are supplied the same input. The OS of

the system in which the experiment is made is Windows 10

Home (64 bit). System Configuration is INTEL(R)

CORE(TM) i5-3210 M CPU@2.50 GHz, RAM 4 GB Nanya

Technology 1600 MHz.

Fig. 11 Input given FCFS Scheduling

Fig. 12 Output obtained for given input in FCFS Scheduling

Fig. 13 Input Given to SJF Simulation

mailto:CPU@2.50

INTERNATIONAL JOURNAL OF ADVANCED STUDIES IN
COMPUTER SCIENCE AND ENGINEERING
IJASCSE VOLUME 5, ISSUE 5, 2016

05/31/2016

WWW.IJASCSE.ORG 12

Fig. 14 Output Obtained for SJF Simulation

Fig. 15 Input Given to Priority Simulation

Fig. 16 Output obtained after providing the Input to Priority Simulation

Fig. 17 Input given to Round Robin Simulation

INTERNATIONAL JOURNAL OF ADVANCED STUDIES IN
COMPUTER SCIENCE AND ENGINEERING
IJASCSE VOLUME 5, ISSUE 5, 2016

05/31/2016

WWW.IJASCSE.ORG 13

Fig. 18 Output obtained for Round Robin Simulation

The above mentioned algorithms are reconstructed

without graphics constructs in GNU GCC Compiler having

version 4.9 series. The outputs of which are given below.

Fig. 19 Output obtained for FCFS Simulation

 Fig. 20 Output obtained for SJF Simulation

Fig. 21 Output obtained for Priority Simulation

INTERNATIONAL JOURNAL OF ADVANCED STUDIES IN
COMPUTER SCIENCE AND ENGINEERING
IJASCSE VOLUME 5, ISSUE 5, 2016

05/31/2016

WWW.IJASCSE.ORG 14

Fig. 22 Output obtained for RR Simulation

IX. EXPERIMENT AND RESULT

 From the simulation that we made on the Operating

System Windows 10 Home (64-bit) having hardware

configuration of RAM 4GB Nanya Technology 1600 MHz ,

INTEL (R) CORE (TM) i5- 3210 M CPU @ 2.50 GHz. The

execution time obtained for the different simulations is given

below. Simulation is a technique which uses the computing

power of the computer. For Deterministic modeling every time

the person required to make assessment was suppose to do

manual calculation. In simulation Program is written which

can give the same results which are generated by deterministic

modeling at a faster pace and with a reduction in human effort.

TABLE V

EXPERIMENTAL RESULTS OBTAINED OF EXECUTION TIME

Time Taken For Execution By the Different Simulations Given below

Snapshot

Number
FCFS SJF Priority Round Robin

1 8.056 sec 7.580 sec 12.126 sec 7.332 sec

2 8.339 sec 7.890 sec 13.270 sec 7.890 sec

3 8.556 sec 8.755 sec 14.845 sec 8.472 sec

4 7.758 sec 7.498 sec 13.076 sec 9.809 sec

TABLE VI

COMPLEXITY OF THE SIMULATIONS AND DATA STRUCTURES USED

Line of Codes Compiled for the different Simulations Implemented in C

FCFS SJF Priority Round Robin

764 785 786 799

Total Number of Integer variables including array count

FCFS SJF Priority Round Robin

51 52 60 113

Total Number of float variables including array count

FCFS SJF Priority Round Robin

1 1 1 1

Total Number of char variables including array count

FCFS SJF Priority Round Robin

131 131 130 181

Total Amount of Data Structure required in terms of variables in the Different

types of Simulation in Bytes(Taking int as 2, char as 1 and float as 4)

FCFS SJF Priority Round Robin

51X2+1X4+1

X131=237

52X2+1X4+1X

131=239

60X2+1X4+1X130=

254

113X2+1X4+1X

181=408

X. GRAPHS ON THE BASIS OF RESULTS OBTAINED

Fig. 23 Graph representing the Comparison of ATAT for different Snapshots.

 The above graph shows the variation in the values

obtained for four observations on the simulated algorithms.

From the graph it is clear that SJF gives the minimum values

whereas the maximum values are attained for FCFS. This

gives a message that SJF policy yields better result in terms of

performance when compared with FCFS, Priority and RR

Scheduling.

0
10
20
30
40
50

Sn
ap

sh
o

t1

Sn
ap

sh
o

t2

Sn
ap

sh
o

t3

Sn
ap

sh
o

t4

A
TA

T
va

lu
e

Snapshot

ATAT Comparison

FCFS

SJF

Priority

RR

INTERNATIONAL JOURNAL OF ADVANCED STUDIES IN
COMPUTER SCIENCE AND ENGINEERING
IJASCSE VOLUME 5, ISSUE 5, 2016

05/31/2016

WWW.IJASCSE.ORG 15

Fig. 24 Graph representing the Comparison of AWT for different Snapshots.

Fig. 25 Graph representing the Comparison of Execution Times of the various

Simulations for different Snapshots.

XI. CONCLUSION

 From Table I, II, III and IV the results obtain for the given

snapshot shows that for ATAT the scheduling algorithm gives:

Priority(Preemtive)>RR>Priority(Nonpreemptive)=SJF(Nonpr

eemptive)=FCFS>SJF (Preemptive). For AWT the result is as:

Priority(Preemtive)>RR>Priority(Nonpreemptive)=SJF(Nonpr

eemptive)=FCFS>SJF (Preemptive) and for ART values are as

follows:Priority(NonPreemtive)=SJF(Nonpreemptive)=FCFS>

Priority(Preemptive)>RR>SJF (Preemptive).

 The conclusion which we can draw from the two

approaches whether it is Simulation or Deterministic

modeling. The best result is given by SJF (Preemptive). Thus,

the work that we did propose the usage of Shortest Job First

for having optimum result. From Table VI we make a

conclusion that Round Robin algorithm for its simulation

requires maximum space for the data structure. Also the

program complexity in terms of lines of codes is maximum

when compared from other three approaches.

ACKNOWLEDGMENT

 The work is done in Guru Ghasidas Vishwavidyalaya. I

place my thanks to my mother, wife, brothers, sister and my

student Ashesh for creating an environment that helped me in

making the findings which I make during my research work..

REFERENCES

[1] T.E. Anderson, B.N. Bershad, E.D. Lazowska and H.M. Levy, "Scheduler

Activations: Effective kernel support for the user level Management of

Parallelism," ACM Transactions on Computer Systems, vol 10, pp. 53-79,
Feb, 1992.

[2] G.R. Andrews and F.B. Schneider, "Concepts and notations for

concurrent programming," Computing Surveys, vol. 15, pp. 3-43, March
1983.

[3] R.D. Blumofe and C.E. Leiserson, "Scheduling Multithreaded

Computations by Work Stealing," Proc. 35th Annual Symp. on
Foundations of Computer Science, IEEE, pp. 356-368, Nov 1994.

[4] M. Buchanan and A. Chien, "Coordinated Thread Scheduling for

Workstation Clusters under Windows NT," The USENIX Windows NT
Workshop, USENIX, pp-47-54, 1997.

[5] A. Chandra, M. Adler, P. Goyal and P. Shenoy, "Surplus Fair
SCheduling: A Proportional-share CPU Scheduling Algorithm for

Symmetric Multiprocessors," Proc. Fourth Symp. on Operating Systems

Design and Implementation, USENIX, pp. 45-58, 2000.
[6] K.J. Duda and D.R. Cheriton, "Borrowed-Virtual time (BVT) Scheduling:

Supporting Latency-Sensitive Threads in a General-Purpose Scheduler,"

Proc. 17th Symp. on Operating Systems Principles, ACM, pp. 261-276,
1999.

[7] W.A. Wulf, “Performance monitors for Multiprogramming Systems,”

Proceeding of the Second ACM Symposium on Operating System
Principles, pp. 175-181, October 1969.

[8] J.I. Schwartz and C. Weissman, “The SDC Time-sharing system

revisited,” Proceeding of the ACM National Meeting, pp. 263-271, Aug
1967.

[9] G. Henry, “The Fair Share Scheduler,” AT&T Bell Laboratories

Technical Journal, October 1984.
[10] E.W. Dijkstra, “Solution of a problem in Concurrent Programming

Control,” Communications of the ACM, vol. 8, no. 9, pp. 569, Sep 1965.

0
5

10
15
20
25
30

S1 S2 S3 S4

A
W

T

Snapshots

AWT Comparison

FCFS

SJF

Priority

RR

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S1 S2 S3 S4

RR

Priority

SJF

FCFS

