
INTERNATIONAL JOURNAL OF ADVANCED STUDIES IN
COMPUTER SCIENCE AND ENGINEERING
IJASCSE VOLUME 5 ISSUE 11, 2016

11/30/2016

WWW.IJASCSE.ORG 120

Influence of Nominal Project Knowledge in the

Detection of Design Smells: An Exploratory

Study with God Class

Khalid Alkharabsheh, Shahed Almobydeen, Jose

A. Taboada

Universidad de Santiago de Compostela, CITIUS

Santiago de Compostela, Spain

{khalid.alkharabsheh, shahed.almobydeen,

joseangel.taboada}@usc.es

Yania Crespo

Escuela de Ingeniería Informática

Universidad de Valladolid

Valladolid, Spain

yania@infor.uva.es

Abstract—Several Design Smell detection tools have been

developed for identifying Design Smells in source code or

design models. The early prediction of a useful set of Design

Smells has a positive impact on software quality. In this paper,

we present an exploratory study to check whether some project

information can be relevant or not to be supplied to a classifier

in order to detect God Class Design Smell. This paper explores

if clarifying the domain, the status and the size category of the

project to which a class belongs to can lead to variations in the

classification accuracy and usefulness for this Design Smell

detection. The dataset is formed by the 12,588 classes of 24

projects with different size categories, domains and maturity

status. We conduct the experiments with eight different

machine learning approaches which are the most recently used

in literature. These eight involve all families of classifiers. The

results of classifiers are compared based on the accuracy,

sensitivity and specificity performance significance tests. It was

found that the set of nominal project knowledge studied in this

paper have not any impact on the detection of God Class

Design Smell based on the set of detection tools were used to

identify the God Class Design Smell.

Keywords-design smell detection; god class; machine learning

I. INTRODUCTION

Software quality is an important concern for software
industries, academic and researchers. To improve quality we
should perform maintaining activities as early as possible
through the software development life cycle. The majority of
software development cost was devoted to maintenance
process [1]. Maintenance process is influenced by the
amount and frequency of maintenance tasks related to
adaptive, corrective and predictive maintenance, the wide
range of different tools required for controlling, documenting
and making changes effectively, and by the degree of code
complexity. Design Smells presence is one of the critical
problems that impact also on the process.

The concept of Design Smell cover all problems related
to the software structure (source code and design) that does
not make compile or execution errors [2]. But as
consequence, Design Smells’ presence negatively affect on
software understandability, testability, extensibility,
reusability and maintainability factors. These problems can
appear in several software artifacts from fine-grained to
coarse-grained including (variables, instructions, operations,
methods, classes, packages, subsystems, layers and their
dependencies). Design Smell detection is an attractive
research field for researches community due to the critical
role of Design Smell detection over improving software
quality.

Several studies, approaches and techniques have been
proposed to detect Design Smells. However, they have a set
of limitations represented in understanding the precise
definition of Design Smells and the process of map
definition into effective detection algorithms. According to
Fowler who introduce the concept for 22 Bad Smells, Large
Class is a class that try to do much (i.e., it has many
responsibilities and instance variables) [3]. Brown mentioned
that to decide a class as a Blob Antipattern, we should
analyze the class and if it contains more than 60 methods and
attributes it indicates the presence of the Blob [4]. According
to Raţiu suggest to detect God Class considering they are
classes that use a lot of data from the closer classes and have
high complexity or low cohesion between methods [5].
Santos design a controlled experiment that focus on
identifying how different experts understand the concept of
God Class, the answers arise that if the class or methods in
the class have a high complexity is considered as God Class
[6]. Large class Bad Smell, The Blob Antipattern and God
Class are closely related Smells in Code defined by different
authors with different names. Design Smell is a unifying
term we use and God Class is the name we use for bringing
both together.

https://ingenieriainformatica.uniovi.es/

INTERNATIONAL JOURNAL OF ADVANCED STUDIES IN
COMPUTER SCIENCE AND ENGINEERING
IJASCSE VOLUME 5 ISSUE 11, 2016

11/30/2016

WWW.IJASCSE.ORG 121

Many commercial or open source tools have been
developed to aid developers in detecting Design Smells
automatically, semi-automatically or manually through
software development phases to support maintenance
activities that will improve the software quality. Most of
detection techniques handle a set of combined metrics,
standard object-oriented metrics, or metrics defined ad hoc
for the smell detection purpose [7]. Even in case a set of
different detection tools used the same set of metrics, the
threshold value will vary for each tool. Consequently, we
obtain different results as the tool used is different. Some of
tools can generate metrics by their own such as iPlasma [8]
[9] and Borland Together [10] and other tools use an input
metrics generated by third party tools. A few tools have been
adopted machine learning techniques for deriving detection
rules.

The rest of paper is organized as follows. Section 2
describes the related work. Section 3 presents the proposed
work methodology. Section 4 describes our experiments on
nominal project information influence when detecting
Design Smells. Section 5 discusses the results of
experiments. Section 6 explains our conclusions.

II. RELATED WORK

In our the state of the art of Design Smell detection, we
found a few studies regarding Design Smell detection that
apply machine learning techniques. Fontana outlined the
common problems in the previous Design Smells detection
and suggests a new approach based on machine learning[11].
The dataset consists of 76 systems from different sizes,
domains, and a large set of relevant metrics. A set of six
Design Smells (God Class, Data Class, Feature Envy, God
Method, Brain Method, Long Method) were predicted in the
experiment. The dataset was used as input to six machine
learning algorithms J48, RandomForest, Naive Bayes, JRip,
SMO, LibSVM. The accuracy of classifiers was different in
prediction from one smell to another and the majority of
classifiers obtain performance more than 90% .

Maneerat and Muenchaisri present a methodology for
predicting Design Smells [12]. They collect 7 dataset from
the previous literatures consist from seven Design Smells
(Lazy Class, Feature Envy, Middle Man, Message Chains,
Long Method, Long Parameter list, Switch Statement)
detected in design models and a set of twenty-seven software
metrics. They trained and tested the dataset to predict Design
Smells using seven machine learning algorithms
RandomForest, Naive Bayes, Logistic Regression, lBl, lBk,
VFI, J48. Statistical significant tests were used to evaluate
the accuracy, sensitivity, and specificity. They found some
Design Smells could be predicted earlier from software
design model. Furthermore, the difficulty to identify the best
machine learning algorithm that accurately predict the seven
Design Smells arose because when they compare the results
of accuracy they found them close to each other and some

algorithms achieve more than 95% of prediction accuracy for
some Design Smells.

BDTEX (Bayesian Detection Expert), a Goal Question
Metric (GQM) based approach to building Bayesian Belief
Networks (BBNs) from the definitions of Antipatterns stood
on rule based representation presented in [13]. The
experiment applied on two projects from different domain
and size to validate three Design Smells (Antipatterns in this
case) Blob, Functional Decomposition and Spaghetti Code.
The result with this approach obtained high values in terms
of precision, recall and utility comparing with another well
know Design smell detection tools such as Décor [18].

Kreimer suggested combining popular methods to detect
Design Smells based on metrics and machine learning
techniques [14]. The aim of the study was to find errors in
design models. The dataset is formed by 688 classes of 2
systems and include five smells Big Class also known as
(Blob), Feature Envy, Long Method, Lazy Class and
Delegator and use J48 Classifier technique. Good accuracy
was obtained with the proposed approach

As we can see, the related works principally focused on
numerical knowledge (metrics) on classes to detect sets of
Design Smells (Bad Smells or Antipatterns). They did the
experimentations without any nominal information on the
projects which are the context of these classes. Hence, we do
not know if that can influence in the way the classifier
predicts. On the other hand, in these works authors usually
experiment with a set of machine learning techniques that
did not include all families of supervised learning
algorithms.

In our work, our attention focused on certain nominal
project knowledge and try to explore its importance
regarding the prediction of God Class Design Smell. God
Class is a class level Design Smell. We want to check
whether some of the above mentioned nominal knowledge
on the project to which the analyzed classes belong can
influence the detection and if it is important to take this
information into account in order to obtain better predictions
that can be more useful for developers. In this paper we
present an exploratory study to check whether some nominal
information on the project of the classes is relevant to be
supplied to the classifier. We are analyzing if clarifying the
domain, the project status and the size category of the project
to which the class belongs to can lead to variations in the
classification accuracy and usefulness. The dataset we used
is form by the 12,588 classes of 24 systems. We conduct the
experiments with eight different machine learning
approaches which are the most recently used and they jointly
involve all families of classifiers.

Wherever Times is specified, Times Roman or Times
New Roman may be used. If neither is available on your
word processor, please use the font closest in appearance to
Times. Avoid using bit-mapped fonts if possible. True-Type
1 or Open Type fonts are preferred. Please embed symbol
fonts, as well, for math, etc.

INTERNATIONAL JOURNAL OF ADVANCED STUDIES IN
COMPUTER SCIENCE AND ENGINEERING
IJASCSE VOLUME 5 ISSUE 11, 2016

11/30/2016

WWW.IJASCSE.ORG 122

III. PROPOSED WORK

In a previous study on the state of the art we found God
Class (class level) Design Smell is one of the most detected
smell in software and has a great interest for researchers
community. We conducted a comparison between five tools
(PMD [15][16], Borland Together [10], JDeodorant [17],
iPlasma [8][9] and Decor [18][19]) to assess the degree of
agreement on detecting God Class. We found different
results for detecting the same smell in the same set of
classes. Therefore, in this paper God Class Design smell was
the selected as a case study to design our experiments
because we are looking for reasons that justifies these lack of
agreement.

In this study we investigate and analyze the impact of
three nominal project information in the God Class Design
Smell detection. These information involve different project
domains, project status, and size categories for the whole
project. To do this, we introduce a research question
addressing the influence of different nominal knowledge in
the detection of God Class Design Smell. The research
question is:

Q1: Does the differences between project domains,
project status, and the size category of the whole project
influence in the detection of God Class Design Smell?

In order to answer the research question, we design a set

of separated experiments to investigate the impact of
domain, status, and size categories in the behavior of
classifiers for God Class detection. We determine the dataset
we will use to cover these nominal information. Our
experiments required dividing the dataset into two groups for
training and testing, the size of training set was
approximately 75% from all dataset and the rest 25% was
used for testing, as we will see in the experimentation section
in details. To conduct the proposed approach, the following
subsections summarize how we can formalize our dataset to
be supplied to machine learning algorithms for obtaining the
classifiers.

A. Dataset

Our dataset include a set of 24 open source software
systems written in Java obtained from SourceForge source
code repository which involved different domains, size
categories and status. We follow the same approach as
Fontana to classify the projects based on size category and
domains [20]. The nominal information of size categories
refers to the size of Total Line of Code in the whole project
(TLOCP). The size category of the whole project is divided
into five categories based on the TLOCP include (Small 0-
4999, Small-medium 5000-14999, Medium 15000-39999,
Medium-Large 40000-99999, Large 100000-499999). Also,
the domain of projects is classified into four different
categories where a set of different particular domains
belongs to each domain category as following:

 Application software: (Word Processor, Web
Browser, Accounting, Graphic and Player.

 Software development: Ide,
Parsers/Generators/Make, SDK, Testing.

 Diagram generator/data visualization: GUI Design
Tool.

 Client server software: Database, Application
Server, Middleware, CMS.

The projects status is obtained as it is declared in the

SourceForge source code repository were involve seven
categories(planning, pre-alpha, alpha, beta,
production/stable, mature, inactive).

The selected projects are analyzed using RefactorIT 2.7
tool to compute a set of important metrics relevant with class
level artifacts as we see in Table I [21]. The selected metrics

TABLE I. LIST OF METRICS AT CLASS LEVEL

Metric Definition

LOC Total Lines of Code

NCLOC Non-Comment Lines of Code

CLOC Comment Lines of Code

EXEC Executable Statements

DC Density of Comments

NOT Number of Types

NOTa Number of Abstract Types

NOTc Number of Concrete Types

NOTe Number of Exported Types

RFC Response for Class

WMC Weighted Methods per Class

DIT Depth in Tree

NOC Number of Children in Tree

DIP Dependency Inversion Principle

LCOM Lack of Cohesion of Methods

NOA Number of Attributes

cover different aspects of the source code such as

complexity, inheritance, size, cohesion and coupling.
Table II presents the main characteristics of our dataset

were the following abbreviation in the table refer to the
different nominal information and stand for [large (L),
Medium-Large (M-L), Medium (M), Medium-Small (M-S),
Small (S), Application software (App), Software
development (Dev), Diagram generator/data visualization
(Vis), Client server software (Cli), Production/Stable (P/S),
Beta (B), Mature (Mat), Multiple-status (Mul)].

Fig. 1 represent the format of our dataset as we shown
every row in the dataset represent sixteen numerical
attributes, the three nominal information, and the result of
classification if a class smelly or not.

B. Machine Learning Techniques

We choose a set of supervised machine learning
techniques that are available in WEKA version 3.7 [22]. In
the state of art for Design Smell detection and machine
learning techniques in our previous study, the selected

INTERNATIONAL JOURNAL OF ADVANCED STUDIES IN
COMPUTER SCIENCE AND ENGINEERING
IJASCSE VOLUME 5 ISSUE 11, 2016

11/30/2016

WWW.IJASCSE.ORG 123

techniques was the most recently used, they jointly involve
all classifiers' families, and work based on different
approaches [NaiveBayes (NB), J48, RandomForest (RF),
JRip, LibSVM, IBK, RandomCommittee (RC) and
InputMappedClassifier (IMC)].

The methodology we propose consists in obtaining a
classifier trained with projects with the same value for the
nominal variable (X17, X18, X19). This value is selected as the
most frequented in the dataset. The selected values are
Application Software for X17, medium-large for X18, and

Production/Stable for X19. The 80% of the projects with this
values will be the training set. The attributes we use as input
to the training process are X1,…,X16 and the information
obtained Smell Detection tools, considered as experts,
indicating if the class is a God Class or no. We will test if the
classifier obtained for projects with the same value for X17 or
X18 or X19 behave the same when used for detecting God
Class in projects with different values in this nominal scale.

TABLE II. DATASET CHARACTERISTICS

ID Name Version Domain Status Size category TLOCP

1 jAudio 1.0.4 App P/S L 117615

2 Freemind 1.0.1 Vis P/S L 106396

3 JasperReports 4.7.1 Dev Mat L 350690

4 SQuirreL SQL Client 1.2 Cli P/S M-L 71626

5 KeyStore Explorer 5.1 Vis P/S M-L 83144

6 DigiExtractor 2.5.2 App P/S M 15668

7 Angry IP Scanner 3.0 Vis P/S, B M 19965

8 Plugfy 0.6 Dev B S 2337

9 Matte 1.7 App P/S M-L 52067

10 sMeta 1.0.3 App P/S M 30843

11 xena 6.1.0 Dev P/S M-L 61526

12 pmd 4.3.x Dev P/S M-L 82885

13 checkstyle 6.2.0 Dev P/S, Mat M-L 41104

14 JDistlib 0.3.8 App P/S M 32081

15 JCLEC 4-base Dev P/S M 37575

16 Java graphplan 1.0 Dev B S-M 1049

17 Mpxj 4.7 App P/S L 261971

18 Apeiron 2.92 App P/S S-M 8908

19 FullSync 0.10.2 App B M 24323

20 OmegaT 3.1.8 App P/S L 121909

21 Lucene 3.0.0 App P/S M-L 81611

22 Ganttproject 2.0.10 App P/S M-L 66540

23 JFreechart 1.0.X App P/S L 206559

24 JHotDraw 5.2 App B M 17807

Figure 1. Dataset input format

http://olex.openlogic.com/categories/reporting

INTERNATIONAL JOURNAL OF ADVANCED STUDIES IN
COMPUTER SCIENCE AND ENGINEERING
IJASCSE VOLUME 5 ISSUE 11, 2016

11/30/2016

WWW.IJASCSE.ORG 124

Fig. 2 summarizes the proposed work to obtain the classifiers
that we will use in the testing process.

IV. EXPERIMENTS

We perform a set of experiments to answer the research
question. The same strategy is used in selecting training and
testing data in all experiments for analyzing influence of
project information. In every experiment on the nominal
projects information, we select 80% from the category that
have the highest number of projects as a training data. The
testing data is prepared manually were contain the rest of
categories in the same type of nominal projects information
plus the rest 20% from the category that have the highest
number of projects. According to this criteria, Table II shows
that 80% of the projects in the application software domain
include the projects (10, 14, 17, 18, 19, 20, 21, 22, 23, 24),
80% of the projects that have a size category medium-large
of whole the project and involve projects (9, 11, 12, 13, 21,
22), and 80% of the production/stable project status include
the projects (1, 2, 5, 6, 10, 11, 14, 17, 18, 20, 21, 22, 23) are
the selected training dataset and the rest of the projects in the
same category, once the training dataset is extracted (the
remaining 20%) plus the projects in the rest of the categories
become the testing dataset. Table III describes the main
characteristic for every experiment regarding the particular
nominal information.

TABLE III. TRAINING & TESTING DATASET

Nominal Training Proj Testing Proj

Domain App 10 Dev, Vis, Cli, 20% App 14

Size M-L 6 S, S-M,M,L, 20% M-L 18

Status P/S 13 B, Mat, Mul, 20% P/S 11

Figure 2. Proposed approach

Regarding the nominal projects knowledge about the

project domain, the training data include 10 projects with

3678 classes while the testing data 14 projects with 8910

classes distributed as the following 7 projects of software

development domain with 5238 classes, 3 projects of

diagram generator/data visualization with 1436 classes, 1

project of client-server domain with 1138 classes, and 3

projects of Application Software that represent 20% of this

category with 1098 classes.

In the size category nominal information the training

data involves 6 projects of the M-L category with 5076

classes while the testing data consist of 18 projects formed

by 7512 classes partitioned as the following groups: 1 (S)

project with 28 classes, 2 projects (S-M) with 112 classes,

1281 classes of 7 (M) projects, 2 projects (M-L) with 1355

classes, and 4763 classes of 6 (L) projects. Finally regarding

the project status nominal information the training data

include 13 projects of the Production/Stable category with

6964 classes while the testing data formed by 5624 classes

divided into 4 projects (P/S) with 2882 classes, 2 (Mul)

projects (Checkstyle, Angry IP scanner) with 547 classes, 1

(Mat) project with 1797 classes, and 4 projects (B) with 398

classes.
The experiments were executed on a personal computer

with the following properties: Processor Intel(R) Core(TM)2
Quad CPU Q9550 @ 2.83GHz, RAM 8.00 GB, Windows 7
Enterprise 64-bit operating system.

A. Experiments Result

We used the output of 5 detection tools (PMD, Décor,
Together, iPlasma, JDeodorant) as experts in order to
introduce this knowledge into the data mining algorithms
according to the following criteria. If one tool or more detect
God Class in a particular class we assign a true value in the
God Class attribute otherwise, this attribute is set false.
According to this strategy, the presence of the God Class is
distributed along the different categories of the nominal

TABLE IV. MACHINE LEARNING ACCURACY PERFORMANCE

Cat/A IBk IMC J48 JRip libSVM NB RF RC

App 0.77 0.84 0.84 0.86 0.84 0.88 0.87 0.88

Dev 0.78 0.87 0.85 0.86 0.87 0.87 0.85 0.88

Cli 0.80 0.92 0.87 0.88 0.92 0.93 0.86 0.90

Vis 0.81 0.93 0.86 0.87 0.93 0.93 0.88 0.89

S 0.85 0.96 0.96 0.96 0.96 0.96 0.92 0.92

S-M 0.71 0.69 0.75 0.81 0.69 0.71 0.79 0.80

M 0.80 0.84 0.86 0.86 0.84 0.85 0.86 0.87

M-L 0.86 0.91 0.86 0.88 0.91 0.92 0.90 0.92

INTERNATIONAL JOURNAL OF ADVANCED STUDIES IN
COMPUTER SCIENCE AND ENGINEERING
IJASCSE VOLUME 5 ISSUE 11, 2016

11/30/2016

WWW.IJASCSE.ORG 125

L 0.78 0.79 0.84 0.85 0.79 0.84 0.84 0.85

B 0.76 0.85 0.85 0.90 0.85 0.86 0.86 0.88

Mat 0.81 0.82 0.85 0.88 0.82 0.86 0.86 0.88

P/S 0.83 0.91 0.90 0.92 0.91 0.92 0.90 0.91

Mul 0.86 0.95 0.92 0.93 0.95 0.94 0.92 0.92

information we are dealing with as follow: 55% of the God
Classes are in Application Software projects, 35% are in
Software Development projects, 5% are in Client/Server and
Diagram generator/data visualization projects, 49% are in
Large projects, 39% are in Medium-Large projects, 10% are
in Medium projects, 1.7% are in Small-Medium projects,
0.3% are in Small projects, 80% are in Production/Stable
projects, 17% are in Mature projects, and 3% in Beta
projects.

We present the results of our experiments regarding the
influence of certain nominal projects knowledge in the
prediction of God Class Design Smell. Tables IV, V, and VI
show the results of accuracy, sensitivity, and specificity
statistical significance test for the performance of the eight
machine learning techniques IBK, IMC, J48, JRip, LibSVM,
NB, RC, and RF. The remaining 20% from the category that
have the highest number of projects is App, M-L, and P/S.
The main observation from Table IV explains that the
accuracy performance for all classifiers is closer to each
other in the same nominal project information or among
different types of nominal projects information.

Table V describes the result of sensitivity performance

that present the ratios of true positive in all classifiers, we
can show that the performance is low in (Dev), (Cli), and (S-
M) nominal projects information. While in the project status
nominal information is close to each others.

The specificity performance shown in Table VI presents
the true negative percentage in the selected classifiers. (Dev)
and (Cli) nominal domains have the highest percentage of
performance comparing with all categories in the same
nominal projects information or other categories. IMC and
LIBSVM classifiers have the lowest percentage of specificity
performance.

TABLE V. MACHINE LEARNING SENSITIVITY PERFORMANCE

Cat/A IBk IMC J48 JRip libSVM NB RF RC

App 0.89 0.84 0.92 0.92 0.84 0.90 0.92 0.92

Dev 0.29 0 0.45 0.47 0 0.53 0.46 0.54

Cli 0.23 0 0.36 0.39 0 0.56 0.34 0.43

Vis 0.98 0.93 0.99 0.99 0.93 0.98 0.99 0.99

S 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96

S-M 0.74 0.69 0.77 0.80 0.69 0.72 0.77 0.78

M 0.86 0.84 0.87 0.87 0.84 0.86 0.87 0.87

M-L 0.94 0.91 0.94 0.96 0.91 0.95 0.94 0.95

L 0.85 0.79 0.85 0.86 0.79 0.85 0.84 0.85

B 0.87 0.85 0.89 0.91 0.85 0.86 0.90 0.91

Mat 0.88 0.82 0.89 0.89 0.82 0.86 0.88 0.89

P/S 0.94 0.91 0.95 0.95 0.91 0.93 0.95 0.95

Mul 0.96 0.95 0.96 0.96 0.95 0.95 0.96 0.96

TABLE VI. MACHINE LEARNING SPECIFICITY PERFORMANCE

Cat/A IBk IMC J48 JRip libSVM NB RF RC

App 0.34 0 0.50 0.56 0 0.74 0.60 0.65

Dev 0.91 0.87 0.93 0.93 0.87 0.91 0.94 0.93

Cli 0.96 0.92 0.98 0.98 0.92 0.96 0.98 0.98

Vis 0.22 0 0.30 0.33 0 0.49 0.35 0.36

S 0 0 0 0 0 0 0 0

S-M 0.55 0 0.65 0.84 0 0.60 1 0.92

M 0.31 0 0.71 0.67 0 0.70 0.70 0.80

M-L 0.31 0 0.32 0.40 0 0.61 0.49 0.57

L 0.47 0 0.73 0.74 0 0.78 0.78 0.85

B 0.21 0 0.50 0.78 0 1 0.52 0.61

Mat 0.45 0 0.63 0.75 0 0.91 0.70 0.76

P/S 0.23 0 0.41 0.52 0 0.69 0.44 0.48

Mul 0.09 0 0.17 0.24 0 0 0.20 0.23

V. DISCUSSION

In this study our attention focused on investigating and
analyzing certain nominal information on projects that can
influence on the prediction of God Class Design Smell in a
source code. We introduce a research question addressing the
impact and importance of different projects status, domains,
and the size category of the whole project to which the class
belongs to on the detection of God Class Design Smell.

Our results in this study show that all machine learning
techniques that participated in the experiments obtain more
than 80 % of accuracy performance as we show in Table VI
in all categories of nominal projects information and the
accuracy values are closer to each other. So, in this case we
cannot identify the best classifiers that predict the God Class
Design Smell. This mean, all classifiers have the same

INTERNATIONAL JOURNAL OF ADVANCED STUDIES IN
COMPUTER SCIENCE AND ENGINEERING
IJASCSE VOLUME 5 ISSUE 11, 2016

11/30/2016

WWW.IJASCSE.ORG 126

behavior in the prediction of God Class Design Smell among
different nominal projects information. We can say that the
selected nominal information were include domain, size
category of whole of the project, and the project status have
not any influence on the detection of God Class Design
Smell based on the knowledge supplied for automatic
detection tools PMD, Decor, JDeodorant, Borland Together,
and iPlasma that used to identify the smell in our dataset.
The detection tool did not take into account from the
beginning the importance of this kind of nominal
information in order to obtain better prediction.

All classifiers achieved more than 90% of sensitivity
performance (see Table V) when the projects domain is
Diagram generator/data visualization (Vis), the size category
of system is Small (S) or Medium-Large (M-L), and the
project status Production/Stable (P/S) or the project have
more than one status (Mul). In contrast, all classifiers obtain
less than 55% of sensitivity performance when the domain of
projects is Software Development or Client-Server. The
specificity performance is very low for all classifiers in all
nominal projects information except two categories in the
domain Software Development and Client-Server.

After the text edit has been completed, the paper is ready
for the template. Duplicate the template file by using the
Save As command, and use the naming convention
prescribed by your conference for the name of your paper. In
this newly created file, highlight all of the contents and
import your prepared text file. You are now ready to style
your paper.

VI. THREATS TO VALIDITY

The main factors that negatively affect the internal
validity of our experiments are the disproportionate number
of projects in size categories, domains, and projects status.
Also, the number of classes in each project especially in size
categories nominal information. The external validity
affected by the nature of analyzed projects were all projects
written Java, have not a very large size category, and does
not include several versions from the same projects.

VII. CONCLUSION

This paper described the approach we are following
based on machine learning techniques to identify the
influence of relevant nominal project knowledge in the
detection of God Class Design Smells. Our attention focused
on the importance of size categories, domains, and projects
status nominal information regarding the prediction of God
Class Design Smell.

In this paper, we present an exploratory study to check
whether some nominal information is relevant to be supplied
to the classifier and can lead to variations in the classification
accuracy and usefulness. The dataset is formed by the 12,588
classes of 24 systems with different size categories, domains,

and project status. We conduct the experiments with eight
different machine learning techniques include
RandomForest, NaiveBayes, RandomCommittee, JRip, IBK,
InputMappedClassifier, LibSVM, and J48 which are the
most recently used and involved all families of classifiers.
Then, we compare the classifiers performance based on the
accuracy, sensitivity, and specificity significance test to
identify if the behavior of classifiers will be the same or
different in the prediction of God Class Design Smell in the
selected nominal projects information.

We find that all classifiers have the same behavior, and
this mean no difference among them. We can say that
selected nominal knowledge in this paper have not any
influence on the God Class detection because the detection
tools (PMD, DECOR, Borland Together, iPlasma,
JDeodorant) that used in our previous study to detect God
Class in the dataset did not include this kind of nominal
information in the detection strategy. However, we cannot
discard the importance of this nominal information to
identify the true God Class in other detection tools.

Our future work will focus on repeating the same study
based on human experts to identify the true God Class
instead of Automatic tools. The same approach can extended
to study other Design Smells.

ACKNOWLEDGMENT

This research is funded by Erasmus program Lot 2
project, led by the University of Santiago de
Compostela (Spain).

REFERENCES

[1] T. Mens and T. Tourwe. "A Survey of Software Refactoring".
IEEE Transactions on Software Engineering,vol.30, pp. 126-
139, Feb. 2004.

[2] F.P. García."Refactoring planning for Design Smell
correction in object oriented software." Ph.D. thesis,
Universidad de Valladolid, Spain, 2011.

[3] K. Beck and M. Fowler. "Bad Smells in Code," in
Refactoring: Improving the Design of Existing Code, 1st ed.,
vol. 3. J. Shanklin Ed. USA: Addison Wesley, 1999, pp.63-
72.

[4] W.J. Brown, R. Malveau, H.W. McCormick III, and T. J.
Mowbray. Antipatterns refactoring software architectures and
projects in crisis. USA: John Wiley & Sons Inc, 1998, pp. 42-
47.

[5] D. Raţiu, S. Ducasse, T. Gîrba, and R. Marinescu. "Using
History Information to Improve Design Flaws Detection,". in
Proc. CSMR, 2004, pp. 223-232.

[6] J. Santos, M. Mendonça, and C. Silva. "An exploratory study
to investigate the impact of conceptualization in God Class
detection," in Proc. EASE, 2013, pp. 48-59.

[7] M. Lanza, and R. Marinescu. Object-Oriented Metrics in
Practice: Using Software Metrics to Characterize. Evaluate.
and Improve the Design of Object-Oriented Systems. Verlag
Berlin Heidelberg: Springer, 2006, pp. 65-70.

http://www.usc.es/
http://www.usc.es/

INTERNATIONAL JOURNAL OF ADVANCED STUDIES IN
COMPUTER SCIENCE AND ENGINEERING
IJASCSE VOLUME 5 ISSUE 11, 2016

11/30/2016

WWW.IJASCSE.ORG 127

[8] C. Marinescu, R. Marinescu, P. Mihancea, D. Raţiu, and R.
Wettel. "iPlasma: An integrated platform for quality
assessment of object oriented design," in Proc. ICSM, 2005,
pp. 77-80.

[9] iPlasma. "iPlasma." Internet:
http://loose.upt.ro/iplasma/index.html, [May. 10, 2015].

[10] Borland Together. "Borland Together." Internet:
http://www.borland.com/us/products/together, [May. 10,
2015].

[11] F. A. Fontana, M. Zanoni, A. Marino, and M.V. Mäntylä.
"Code Smell Detection: Towards a Machine Learning-based
Approach," presented at the 29th Int. Conf. on Software
Maintenance, Eindhoven, Netherlands, 2013.

[12] N. Maneerat and P. Muenchaisri. "Bad-smell Prediction from
Software Design Model Using Machine Learning
Techniques," presented at the 8th Int. Joint Conf. on
Computer Science and Software Engineering (JCSSE),
Nakhon Pathom, Thailand, 2011.

[13] F. Khomh, S. Vaucher, Y. Guéhéneuc, and H. Sahraoui.
"BDTEX: A GQM-based Bayesian approach for the
detection of antipatterns". The Journal of Systems and
Software, vol. 84, pp. 559-572, Apr. 2011.

[14] J. Kreimer. "Adaptive Detection of Design Flaws". Electronic
Notes in Theoretical Computer Science, vol. 141, pp. 117-
136, Dec. 2005.

[15] A.F. Fontana and S. Spinelli. "Impact of Refactoring on
Quality Code Evaluation," in Proc. WRT, 2011, pp. 37–40.

[16] PMD. "PMD." Internet: http://pmd.sourceforge.net/, [May.
10, 2015].

[17] N. Tsantalis,T. Chaikalis, and A. Chatzigeorgiou.
"JDeodorant: Identification and removal of type checking bad
smells," in Proc. CSMR, 2008, pp. 329–331.

[18] N. Moha and Y. Guéhéneuc. "Décor: A Tool for the Detection
of Design Defects," in Proc. ASE, 2007, pp. 527-528.

[19] N. Moha, Y. Guéhéneuc, L. Duchien, and A. Le Meur.
"DECOR: A method for the specification and detection of
code and Design Smells". IEEE Transactions on Software
Engineering. vol. 36. pp. 20-36. 2010.

[20] F.A. Fontana, V. Ferme, and A. Marino. "Investigating the
Impact of Code Smells on System’s Quality: An Empirical
Study on Systems of Different Application Domains,"
presented at the Int. conf. on Software Maintenance,
Eindhoven, Eindhoven, 2013.

[21] Refactorit. "Refactorit." Internet:
http://refactorit.sourceforge.net/, [May. 10, 2015].

[22] I.H. Witten, E. Frank, and M.A. Hall. Data Mining Practical
Machine Learning Tools and Techniques. Burlington MA,
USA: Elsevier, 2011, pp. 445-474.

http://loose.upt.ro/iplasma/index.html
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6676473
https://en.wikipedia.org/wiki/Netherlands
https://en.wikipedia.org/wiki/Thailand
http://pmd.sourceforge.net/
http://refactorit.sourceforge.net/

