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Abstract—Several Design Smell detection tools have been 

developed for identifying Design Smells in source code or 

design models. The early prediction of a useful set of Design 

Smells has a positive impact on software quality. In this paper, 

we present an exploratory study to check whether some project 

information can be relevant or not to be supplied to a classifier 

in order to detect God Class Design Smell. This paper explores 

if clarifying the domain, the status and the size category of the 

project to which a class belongs to can lead to variations in the 

classification accuracy and usefulness for this Design Smell 

detection. The dataset is formed by the 12,588 classes of 24 

projects with different size categories, domains and maturity 

status. We conduct the experiments with eight different 

machine learning approaches which are the most recently used 

in literature. These eight involve all families of classifiers. The 

results of classifiers are compared based on the accuracy, 

sensitivity and specificity performance significance tests. It was 

found that the set of nominal project knowledge studied in this 

paper have not any impact on the detection of God Class 

Design Smell based on the set of detection tools were used to 

identify the God Class Design Smell.  

Keywords-design smell detection; god class; machine learning 

I.  INTRODUCTION  

Software quality is an important concern for software 
industries, academic and researchers. To improve quality we 
should perform maintaining activities as early as possible 
through the software development life cycle. The majority of 
software development cost was devoted to maintenance 
process [1]. Maintenance process is influenced by the 
amount and frequency of maintenance tasks related to 
adaptive, corrective and predictive maintenance, the wide 
range of different tools required for controlling, documenting 
and making changes effectively, and by the degree of code 
complexity. Design Smells presence is one of the critical 
problems that impact also on the process. 

The concept of Design Smell cover all problems related 
to the software structure (source code and design) that does 
not make compile or execution errors [2]. But as 
consequence, Design Smells’ presence negatively affect on 
software understandability, testability, extensibility, 
reusability and maintainability factors. These problems can 
appear in several software artifacts from fine-grained to 
coarse-grained including (variables, instructions, operations, 
methods, classes, packages, subsystems, layers and their 
dependencies). Design Smell detection is an attractive 
research field for researches community due to the critical 
role of Design Smell detection over improving software 
quality.  

Several studies, approaches and techniques have been 
proposed to detect Design Smells. However, they have a set 
of limitations represented in understanding the precise 
definition of Design Smells and the process of map 
definition into effective detection algorithms. According to 
Fowler who introduce the concept for 22 Bad Smells, Large 
Class is a class that try to do much (i.e., it has many 
responsibilities and instance variables) [3]. Brown mentioned 
that to decide a class as a Blob Antipattern, we should 
analyze the class and if it contains more than 60 methods and 
attributes it indicates the presence of the Blob [4]. According 
to Raţiu suggest to detect God Class considering they are 
classes that use a lot of data from the closer classes and have 
high complexity or low cohesion between methods [5]. 
Santos design a controlled experiment that focus on 
identifying how different experts understand the concept of 
God Class, the answers arise that if the class or methods in 
the class have a high complexity is considered as God Class 
[6]. Large class Bad Smell, The Blob Antipattern and God 
Class are closely related Smells in Code defined by different 
authors with different names. Design Smell is a unifying 
term we use and God Class is the name we use for bringing 
both together. 

https://ingenieriainformatica.uniovi.es/
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Many commercial or open source tools have been 
developed to aid developers in detecting Design Smells 
automatically, semi-automatically or manually through 
software development phases to support maintenance 
activities that will improve the software quality. Most of 
detection techniques handle a set of combined metrics, 
standard object-oriented metrics, or metrics defined ad hoc 
for the smell detection purpose [7]. Even in case a set of 
different detection tools used the same set of metrics, the 
threshold value will vary for each tool. Consequently, we 
obtain different results as the tool used is different. Some of 
tools can generate metrics by their own such as iPlasma [8] 
[9] and Borland Together [10] and other tools use an input 
metrics generated by third party tools. A few tools have been 
adopted machine learning techniques for deriving detection 
rules. 

The rest of paper is organized as follows. Section 2 
describes the related work. Section 3 presents the proposed 
work methodology. Section 4 describes our experiments on 
nominal project information influence when detecting 
Design Smells. Section 5 discusses the results of 
experiments. Section 6 explains our conclusions. 

II. RELATED WORK 

In our the state of the art of Design Smell detection, we 
found a few studies regarding Design Smell detection that 
apply machine learning techniques. Fontana outlined the 
common problems in the previous Design Smells detection 
and suggests a new approach based on machine learning[11]. 
The dataset consists of 76 systems from different sizes, 
domains, and a large set of relevant metrics. A set of six 
Design Smells  ( God Class, Data Class, Feature Envy, God 
Method, Brain Method, Long Method) were predicted in the 
experiment. The dataset was used as input to six machine 
learning algorithms J48, RandomForest, Naive Bayes, JRip, 
SMO, LibSVM. The accuracy of classifiers was different in 
prediction from one smell to another and the majority of  
classifiers obtain performance more than 90% . 

Maneerat and Muenchaisri present a methodology for 
predicting Design Smells [12]. They collect 7 dataset from 
the previous literatures consist from seven Design Smells 
(Lazy Class, Feature Envy, Middle Man, Message Chains, 
Long Method, Long Parameter list, Switch Statement) 
detected in design models and a set of twenty-seven software 
metrics. They trained and tested the dataset to predict Design 
Smells using seven machine learning algorithms 
RandomForest, Naive Bayes, Logistic Regression, lBl, lBk, 
VFI, J48. Statistical significant tests were used to evaluate 
the accuracy, sensitivity, and specificity. They found some 
Design Smells could be predicted earlier from software 
design model. Furthermore, the difficulty to identify the best 
machine learning algorithm that accurately predict the seven 
Design Smells arose because when they compare the results 
of accuracy they found them close to each other and some 

algorithms achieve more than 95% of prediction accuracy for 
some Design Smells. 

BDTEX (Bayesian Detection Expert), a Goal Question 
Metric (GQM) based approach to building Bayesian Belief 
Networks (BBNs) from the definitions of Antipatterns stood 
on rule based representation presented in [13]. The 
experiment applied on two projects from different domain 
and size to validate three Design Smells (Antipatterns in this 
case) Blob, Functional Decomposition and Spaghetti Code. 
The result with this  approach obtained high values in terms 
of precision, recall and utility comparing with another well 
know Design smell detection tools such as Décor [18].  

Kreimer suggested combining popular methods to detect 
Design Smells based on metrics and machine learning 
techniques [14]. The aim of the study was to find errors in 
design models. The dataset is formed by 688 classes of 2 
systems and include five smells Big Class also known as 
(Blob), Feature Envy, Long Method, Lazy Class and 
Delegator and use J48 Classifier technique. Good accuracy 
was obtained with the proposed approach 

As we can see, the related works principally focused on 
numerical knowledge (metrics) on classes to detect sets of 
Design Smells (Bad Smells or Antipatterns). They did the 
experimentations without any nominal information on the 
projects which are the context of these classes. Hence, we do 
not know if that can influence in the way the classifier 
predicts. On the other hand, in these works authors usually 
experiment with a set of machine learning techniques that 
did not include all families of supervised learning 
algorithms. 

In our work, our attention focused on certain nominal 
project knowledge and try to explore its importance 
regarding the prediction of God Class Design Smell. God 
Class is a class level Design Smell. We want to check 
whether some of the above mentioned nominal knowledge 
on the project to which the analyzed classes belong can 
influence the detection and if it is important to take this 
information into account in order to obtain better predictions 
that can be more useful for developers. In this paper we 
present an exploratory study to check whether some nominal 
information on the project of the classes is relevant to be 
supplied to the classifier. We are analyzing if clarifying the 
domain, the project status and the size category of the project 
to which the class belongs to can lead to variations in the 
classification accuracy and usefulness. The dataset we used 
is form by the 12,588 classes of 24 systems. We conduct the 
experiments with eight different machine learning 
approaches which are the most recently used and they jointly 
involve all families of classifiers. 

Wherever Times is specified, Times Roman or Times 
New Roman may be used. If neither is available on your 
word processor, please use the font closest in appearance to 
Times. Avoid using bit-mapped fonts if possible. True-Type 
1 or Open Type fonts are preferred. Please embed symbol 
fonts, as well, for math, etc. 
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III. PROPOSED WORK 

In a previous study on the state of the art we found God 
Class (class level) Design Smell is one of the most detected 
smell in software and has a great interest for researchers 
community. We conducted a comparison between five tools 
(PMD [15][16], Borland Together [10], JDeodorant [17], 
iPlasma [8][9] and Decor [18][19]) to assess the degree of 
agreement on detecting God Class. We found different 
results for detecting the same smell in the same set of 
classes. Therefore, in this paper God Class Design smell was 
the selected as a case study to design our experiments 
because we are looking for reasons that justifies these lack of 
agreement. 

In this study we investigate and analyze the impact of 
three nominal project information in the God Class Design 
Smell detection. These information involve different project 
domains, project status, and size categories for the whole 
project. To do this, we introduce a research question 
addressing the influence of different nominal knowledge in 
the detection of God Class Design Smell. The research 
question is: 

Q1: Does the differences between project domains, 
project status, and the size category of the whole project 
influence in the detection of God Class Design Smell? 

 
In order to answer the research question, we design a set 

of separated experiments to investigate the impact of 
domain, status, and size categories in the behavior of 
classifiers for God Class detection. We determine the dataset 
we will use to cover these nominal information. Our 
experiments required dividing the dataset into two groups for 
training and testing, the size of training set was 
approximately 75% from all dataset and the rest 25% was 
used for testing, as we will see in the experimentation section 
in details. To conduct the proposed approach, the following 
subsections summarize how we can formalize our dataset to 
be supplied to machine learning algorithms for obtaining the 
classifiers. 

A. Dataset 

Our dataset include a set of 24 open source software 
systems written in Java obtained from SourceForge source 
code repository which involved different domains, size 
categories and status. We follow the same approach as 
Fontana to classify the projects based on size category and 
domains [20]. The nominal information of size categories 
refers to the size of Total Line of Code in the whole project 
(TLOCP). The size category of the whole project is divided 
into five categories based on the TLOCP include (Small 0-
4999, Small-medium 5000-14999, Medium 15000-39999, 
Medium-Large 40000-99999, Large 100000-499999). Also, 
the domain of projects is classified into four different 
categories where a set of different particular domains 
belongs to each domain category as following:  

 

 Application software: (Word Processor, Web 
Browser, Accounting, Graphic and Player. 

  Software development: Ide, 
Parsers/Generators/Make, SDK, Testing. 

  Diagram generator/data visualization: GUI Design 
Tool. 

 Client server software: Database, Application 
Server, Middleware, CMS. 

 
The projects status is obtained as it is declared in the 

SourceForge source code repository were involve seven 
categories(planning, pre-alpha, alpha, beta, 
production/stable, mature, inactive). 

The selected projects are analyzed using RefactorIT 2.7 
tool to compute a set of important metrics relevant with class 
level artifacts as we see in Table I [21]. The selected metrics  

TABLE I. LIST OF METRICS AT CLASS LEVEL 

Metric Definition 

LOC Total Lines of Code 

NCLOC Non-Comment Lines of Code 

CLOC Comment Lines of Code 

EXEC Executable Statements 

DC Density of Comments 

NOT Number of Types 

NOTa Number of Abstract Types 

NOTc Number of Concrete Types 

NOTe Number of Exported Types 

RFC Response for Class 

WMC Weighted Methods per Class 

DIT Depth in Tree 

NOC Number of Children in Tree 

DIP Dependency Inversion Principle 

LCOM Lack of Cohesion of Methods 

NOA Number of Attributes 

    
cover different aspects of the source code such as 

complexity, inheritance, size, cohesion and coupling. 
Table II presents the main characteristics of our dataset 

were the following abbreviation in the table refer to the 
different nominal information and stand for [large (L), 
Medium-Large (M-L), Medium (M), Medium-Small (M-S), 
Small (S), Application software (App), Software 
development (Dev), Diagram generator/data visualization 
(Vis), Client server software (Cli), Production/Stable (P/S), 
Beta (B), Mature (Mat), Multiple-status (Mul)]. 

Fig. 1 represent the format of our dataset as we shown 
every row in the dataset represent sixteen numerical 
attributes, the three nominal information, and the result of 
classification if a class smelly or not.  

B. Machine Learning Techniques 

We choose a set of supervised machine learning 
techniques that are available in WEKA version 3.7 [22]. In 
the state of art for Design Smell detection and machine 
learning techniques in our previous study, the selected 
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techniques was the most recently used, they jointly involve 
all classifiers' families, and work based on different 
approaches [NaiveBayes (NB), J48, RandomForest (RF), 
JRip, LibSVM, IBK, RandomCommittee (RC) and 
InputMappedClassifier (IMC)].  

The methodology we propose consists in obtaining a 
classifier trained with projects with the same value for the 
nominal variable (X17, X18, X19). This value is selected as the 
most frequented in the dataset. The selected values are 
Application Software for X17, medium-large for X18, and 

Production/Stable for X19. The 80% of the projects with this 
values will be the training set. The attributes we use as input 
to the training process are X1,…,X16 and the information 
obtained Smell Detection tools, considered as experts, 
indicating if the class is a God Class or no. We will test if the 
classifier obtained for projects with the same value for X17 or 
X18 or X19 behave the same when used for detecting God 
Class in projects with different values in this nominal scale.  

 

 

 

TABLE II. DATASET CHARACTERISTICS 

ID Name Version Domain Status Size category TLOCP 

1 jAudio 1.0.4 App P/S L 117615 

2 Freemind 1.0.1 Vis P/S L 106396 

3 JasperReports 4.7.1 Dev Mat L 350690 

4 SQuirreL SQL Client 1.2 Cli P/S M-L 71626 

5 KeyStore Explorer 5.1 Vis P/S M-L 83144 

6 DigiExtractor 2.5.2 App P/S M 15668 

7 Angry IP Scanner 3.0 Vis P/S, B M 19965 

8 Plugfy 0.6 Dev B S 2337 

9 Matte 1.7 App P/S M-L 52067 

10 sMeta 1.0.3 App P/S M 30843 

11 xena 6.1.0 Dev P/S M-L 61526 

12 pmd 4.3.x Dev P/S M-L 82885 

13 checkstyle 6.2.0 Dev P/S, Mat M-L 41104 

14 JDistlib 0.3.8 App P/S M 32081 

15 JCLEC 4-base Dev P/S M 37575 

16 Java graphplan 1.0 Dev B S-M 1049 

17 Mpxj 4.7 App P/S L 261971 

18 Apeiron 2.92 App P/S S-M 8908 

19 FullSync 0.10.2 App B M 24323 

20 OmegaT 3.1.8 App P/S L 121909 

21 Lucene 3.0.0 App P/S M-L 81611 

22 Ganttproject 2.0.10 App P/S M-L 66540 

23 JFreechart 1.0.X App  P/S L 206559 

24 JHotDraw 5.2 App B M 17807 

 
 

 

Figure 1. Dataset input format 

 

http://olex.openlogic.com/categories/reporting
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Fig. 2 summarizes the proposed work to obtain the classifiers 
that we will use in the testing process. 

 

IV. EXPERIMENTS 

We perform a set of experiments to answer the research 
question. The same strategy is used in selecting training and 
testing data in all experiments for analyzing influence of 
project information. In every experiment on the nominal 
projects information, we select 80% from the category that 
have the highest number of projects as a training data. The 
testing data is prepared manually were contain the rest of 
categories in the same type of nominal projects information 
plus the rest 20% from the category that have the highest 
number of projects. According to this criteria, Table II shows 
that 80% of the projects in the application software domain 
include the projects (10, 14, 17, 18, 19, 20, 21, 22, 23, 24), 
80% of the projects that have a size category medium-large 
of whole the project and involve projects (9, 11, 12, 13, 21, 
22), and 80% of the production/stable project status include 
the projects (1, 2, 5, 6, 10, 11, 14, 17, 18, 20, 21, 22, 23) are 
the selected training dataset and the rest of the projects in the 
same category, once the training dataset is extracted (the 
remaining 20%) plus the projects in the rest of the categories 
become the testing dataset. Table III describes the main 
characteristic for every experiment regarding the particular 
nominal information.  

TABLE III. TRAINING & TESTING DATASET 

Nominal Training Proj Testing Proj 

Domain App 10 Dev, Vis, Cli, 20% App 14 

Size M-L 6 S, S-M,M,L, 20% M-L 18 

Status P/S 13 B, Mat, Mul, 20% P/S 11 

 

 

Figure 2. Proposed approach 

 

Regarding the nominal projects knowledge about the 

project domain, the training data include 10 projects with 

3678 classes while the testing data 14 projects with 8910 

classes distributed as the following 7 projects of software 

development domain with 5238 classes, 3 projects of  

diagram generator/data visualization with 1436 classes, 1 

project of client-server domain with 1138 classes, and 3 

projects of Application Software that  represent 20% of this 

category with 1098 classes.  

In the size category nominal information the training 

data involves 6 projects of the M-L category with 5076 

classes while the testing data consist of 18 projects formed 

by 7512 classes partitioned as the following groups: 1 (S) 

project with 28 classes, 2 projects (S-M) with 112 classes, 

1281 classes of 7 (M) projects, 2 projects (M-L) with 1355 

classes, and 4763 classes of 6 (L) projects. Finally regarding 

the project status nominal information the training data 

include 13 projects of the Production/Stable category with 

6964 classes while the testing data formed by 5624 classes 

divided into 4 projects (P/S) with 2882 classes, 2 (Mul) 

projects (Checkstyle, Angry IP scanner) with 547 classes,  1 

(Mat) project with 1797 classes, and 4 projects (B) with 398 

classes. 
The experiments were executed on a personal computer 

with the following properties: Processor Intel(R) Core(TM)2 
Quad CPU Q9550 @ 2.83GHz, RAM 8.00 GB, Windows 7 
Enterprise 64-bit operating system. 

A. Experiments Result 

We used the output of 5 detection tools (PMD, Décor, 
Together, iPlasma, JDeodorant) as experts in order to 
introduce this knowledge into the data mining algorithms 
according to the following criteria. If one tool or more detect 
God Class in a particular class we assign a true value in the 
God Class attribute otherwise, this attribute is set false. 
According to this strategy, the presence of the God Class is 
distributed along the different categories of the nominal  

TABLE IV. MACHINE LEARNING ACCURACY PERFORMANCE 

Cat/A IBk IMC J48 JRip libSVM NB RF RC 

App 0.77 0.84 0.84 0.86 0.84 0.88 0.87 0.88 

Dev 0.78 0.87 0.85 0.86 0.87 0.87 0.85 0.88 

Cli 0.80 0.92 0.87 0.88 0.92 0.93 0.86 0.90 

Vis 0.81 0.93 0.86 0.87 0.93 0.93 0.88 0.89 

S 0.85 0.96 0.96 0.96 0.96 0.96 0.92 0.92 

S-M 0.71 0.69 0.75 0.81 0.69 0.71 0.79 0.80 

M 0.80 0.84 0.86 0.86 0.84 0.85 0.86 0.87 

M-L 0.86 0.91 0.86 0.88 0.91 0.92 0.90 0.92 
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L 0.78 0.79 0.84 0.85 0.79 0.84 0.84 0.85 

B 0.76 0.85 0.85 0.90 0.85 0.86 0.86 0.88 

Mat 0.81 0.82 0.85 0.88 0.82 0.86 0.86 0.88 

P/S 0.83 0.91 0.90 0.92 0.91 0.92 0.90 0.91 

Mul 0.86 0.95 0.92 0.93 0.95 0.94 0.92 0.92 

 
information we are dealing with as follow: 55% of the God 
Classes are in Application Software projects, 35% are in 
Software Development projects, 5% are in Client/Server and 
Diagram generator/data visualization projects, 49% are in 
Large projects, 39% are in Medium-Large projects, 10% are 
in Medium projects, 1.7% are in Small-Medium projects, 
0.3% are in Small projects,  80% are in Production/Stable 
projects, 17% are in Mature projects, and 3% in Beta 
projects.  

We present the results of our experiments regarding the 
influence of certain nominal projects knowledge in the 
prediction of God Class Design Smell. Tables IV, V, and VI 
show the results of accuracy, sensitivity, and specificity 
statistical significance test for the performance of the eight 
machine learning techniques IBK, IMC, J48, JRip, LibSVM, 
NB, RC, and RF.  The remaining 20% from the category that 
have the highest number of projects is App, M-L, and P/S. 
The main observation from Table IV explains that the 
accuracy performance for all classifiers is closer to each 
other in the same nominal project information or among 
different types of nominal projects information. 

 
Table V describes the result of sensitivity performance 

that present the ratios of true positive in all classifiers, we 
can show that the performance is low in (Dev), (Cli), and (S-
M) nominal projects information. While in the project status 
nominal information is close to each others. 

The specificity performance shown in Table VI presents 
the true negative percentage in the selected classifiers. (Dev) 
and (Cli) nominal domains have the highest percentage of 
performance comparing with all categories in the same 
nominal projects information or other categories. IMC and 
LIBSVM classifiers have the lowest percentage of specificity 
performance. 

TABLE V. MACHINE LEARNING SENSITIVITY PERFORMANCE 

Cat/A IBk IMC J48 JRip libSVM NB RF RC 

App 0.89 0.84 0.92 0.92 0.84 0.90 0.92 0.92 

Dev 0.29 0 0.45 0.47 0 0.53 0.46 0.54 

Cli 0.23 0 0.36 0.39 0 0.56 0.34 0.43 

Vis 0.98 0.93 0.99 0.99 0.93 0.98 0.99 0.99 

S 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 

S-M 0.74 0.69 0.77 0.80 0.69 0.72 0.77 0.78 

M 0.86 0.84 0.87 0.87 0.84 0.86 0.87 0.87 

M-L 0.94 0.91 0.94 0.96 0.91 0.95 0.94 0.95 

L 0.85 0.79 0.85 0.86 0.79 0.85 0.84 0.85 

B 0.87 0.85 0.89 0.91 0.85 0.86 0.90 0.91 

Mat 0.88 0.82 0.89 0.89 0.82 0.86 0.88 0.89 

P/S 0.94 0.91 0.95 0.95 0.91 0.93 0.95 0.95 

Mul 0.96 0.95 0.96 0.96 0.95 0.95 0.96 0.96 

 

TABLE VI. MACHINE LEARNING SPECIFICITY PERFORMANCE 

Cat/A IBk IMC J48 JRip libSVM NB RF RC 

App 0.34 0 0.50 0.56 0 0.74 0.60 0.65 

Dev 0.91 0.87 0.93 0.93 0.87 0.91 0.94 0.93 

Cli 0.96 0.92 0.98 0.98 0.92 0.96 0.98 0.98 

Vis 0.22 0 0.30 0.33 0 0.49 0.35 0.36 

S 0 0 0 0 0 0 0 0 

S-M 0.55 0 0.65 0.84 0 0.60 1 0.92 

M 0.31 0 0.71 0.67 0 0.70 0.70 0.80 

M-L 0.31 0 0.32 0.40 0 0.61 0.49 0.57 

L 0.47 0 0.73 0.74 0 0.78 0.78 0.85 

B 0.21 0 0.50 0.78 0 1 0.52 0.61 

Mat 0.45 0 0.63 0.75 0 0.91 0.70 0.76 

P/S 0.23 0 0.41 0.52 0 0.69 0.44 0.48 

Mul 0.09 0 0.17 0.24 0 0 0.20 0.23 

 

V. DISCUSSION 

In this study our attention focused on investigating and 
analyzing certain nominal information on projects that can 
influence on the prediction of God Class Design Smell in a 
source code. We introduce a research question addressing the 
impact and importance of different projects status, domains, 
and the size category of the whole project to which the class 
belongs to on the detection of God Class Design Smell.  

Our results in this study show that all machine learning 
techniques that participated in the experiments obtain more 
than 80 % of accuracy performance as we show in Table VI 
in all categories of nominal projects information and the 
accuracy values are closer to each other. So, in this case we 
cannot identify the best classifiers that predict the God Class 
Design Smell. This mean, all classifiers have the same 
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behavior in the prediction of God Class Design Smell among 
different nominal projects information. We can say that the 
selected nominal information were include domain, size 
category of whole of the project, and the project status have 
not any influence on the detection of God Class Design 
Smell based on the knowledge supplied for automatic 
detection tools PMD, Decor, JDeodorant, Borland Together, 
and iPlasma that used to identify the smell in our dataset. 
The detection tool did not take into account from the 
beginning the importance of this kind of nominal 
information in order to obtain better prediction.  

All classifiers achieved more than 90% of sensitivity 
performance (see Table V) when the projects domain is 
Diagram generator/data visualization (Vis),  the size category 
of system is Small (S) or Medium-Large (M-L), and the 
project status Production/Stable (P/S) or the project have 
more than one status (Mul). In contrast, all classifiers obtain 
less than 55% of sensitivity performance when the domain of 
projects is Software Development or Client-Server. The 
specificity performance is very low for all classifiers in all 
nominal projects information except two categories in the 
domain Software Development and Client-Server. 

After the text edit has been completed, the paper is ready 
for the template. Duplicate the template file by using the 
Save As command, and use the naming convention 
prescribed by your conference for the name of your paper. In 
this newly created file, highlight all of the contents and 
import your prepared text file. You are now ready to style 
your paper.  

 

VI. THREATS TO VALIDITY 

The main factors that negatively affect the internal 
validity of our experiments are the disproportionate number 
of projects in size categories, domains, and projects status. 
Also, the number of classes in each project especially in size 
categories nominal information. The external validity 
affected by the nature of analyzed projects were all projects 
written Java, have not a very large size category, and does 
not include several versions from the same projects. 

 

VII. CONCLUSION 

This paper described the approach we are following 
based on machine learning techniques to identify the 
influence of relevant nominal project knowledge in the 
detection of God Class Design Smells. Our attention focused 
on the importance of size categories, domains, and projects 
status nominal information regarding the prediction of God 
Class Design Smell.  

In this paper, we present an exploratory study to check 
whether some nominal information is relevant to be supplied 
to the classifier and can lead to variations in the classification 
accuracy and usefulness. The dataset is formed by the 12,588 
classes of 24 systems with different size categories, domains, 

and project status. We conduct the experiments with eight 
different machine learning techniques include 
RandomForest, NaiveBayes, RandomCommittee, JRip, IBK, 
InputMappedClassifier, LibSVM, and J48 which are the 
most recently used and involved all families of classifiers. 
Then, we compare the classifiers performance based on the 
accuracy, sensitivity, and specificity significance test to 
identify if the behavior of classifiers will be the same or 
different in the prediction of God Class Design Smell in the 
selected nominal projects information.  

We find that all classifiers have the same behavior, and 
this mean no difference among them. We can say that 
selected nominal knowledge in this paper have not any 
influence on the God Class detection because the detection 
tools (PMD, DECOR, Borland Together, iPlasma, 
JDeodorant) that used in our previous study to detect God 
Class in the dataset did not include this kind of nominal 
information in the detection strategy. However, we cannot 
discard the importance of this nominal information to 
identify the true God Class in other detection tools.  

Our future work will focus on repeating the same study 
based on human experts to identify the true God Class 
instead of Automatic tools. The same approach can extended 
to study other Design Smells. 
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