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Porous media description using 3D non-
uniform generalized cylinders and computed 

tomography images 
Ndeye Fatou Ngom, Cheikh H.T.Cherif Ndiaye, and Oumar Niang  

Abstract— In this paper, computer Tomographic techniques is used to study complex porous media in three dimensions. A 

methodology for extracting topologically equivalent networks of porous media from soil images samples is presented. The 

proposed description approximates the pore space using non-uniform generalized cylinders. We show that the non-uniform 

generalized cylinders matches more the real soil pore galleries than other primitives such as uniform generalized cylinders. 

Formula to compute quantitative characteristics on the generalized cylinder like length, tortuosity, volume and soil properties 

characteristics such as hydraulic conductivity are also proposed. New concepts (degree of compactness and variability) are 

used to compare the different representations. The description is applied to real soil 3D CT images and the results are 

compared to a previous published paper based on the same data. The tools we used enabled us to have a more autonomous 

and dynamic computation. 

Index Terms— 3D reconstruction, Computed tomography images, Pore network, Porous media, generalized cylinders.  

——————————      —————————— 

1 INTRODUCTION

ecent advances in imaging technologies have been 

used to obtain accurate 3D  characterizations of 

complex pore space geometry, to visualize and quantify 

pore structural changes [13,19,23]. The availability of 

microscopic scale data, combined with the anticipation of 

further advances in the very near future in terms of both 

laser and X-ray technologies opening up even brighter 

prospect, has prompted researchers to develop an array 

of sophisticated models at the pore scale [17]. However 

the results of image based modeling studies depend 

crucially on the employed model and the quality of the 

pore space image on which the model runs [13]. Given 

the complexity and the heterogeneity of natural porous 

media, non-destructive characterization techniques such 

as X-ray computed tomography techniques (X-ray CT) are 

more suited to extract structural information of the 

porous material in the physical three dimensional space  

and quantify pore structural changes through a simplified 

version of the complex void space referred to pore 

network [4,24,3]. 

 
Pore network consist of an interconnected network of 
pores (or nodes) and throats (or bonds) and have been 

widely used in porous media modeling to study flow, 
transport phenomenon, organic matter decomposition 
and microbial dynamic [14,8,9,22,11]. The manner in 
which pores are connected to their nearest neighbors 
constitutes the network topology while the specific 
geometric idealizations used to represent pores and 
throats define the network geometry [25]. Thus the most 
critical step prior to any modeling effort is the accurate 
characterization of the pore space geometry and topology. 
To ensure the preservation of topological structure of the 
solid void interface, skeleton is a search path of a good 
characterization of pore by set of geometric primitives.  In 
the cases where theses primitives are balls, the center of 
maximal balls obtained through Delaunay triangulation 
of the soil structure shape is often used to generate the 
skeleton [21,16,19]. However, as a maximal ball can be 
including in the set of maximal balls representing the 
pore space, their number can be reduced.  
 
 
To ensure the conservation of topological properties 
while performing the minimization process, the concept 
of pore space hierarchical representation was introduced 
[13,14]. The pore space is first decomposed by a minimal 
set of balls covering the skeleton. Then by connected 
chains of balls which is afterward used to represent pore 
channel by primitives such as cylinders and circular 
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generalized cylinders.  
 
 
However there were some limitations: loss of volume 
during the approximation process, no variation of pore 
channel radius and no possibility of network deployment.  
To overcome these limitations, in the present study, the 
uniform generalized cylinders concept is extended to the 
non-uniform case to provide a more accurate 
approximation of pore channels. 

A non-uniform generalized cylinder is a generalized 
cylinder whose distance between its skeleton and its 
boudaries is not constant along its length.  

 
 
 

Fig.1 Schematic diagram of the processing steps 
 

The proposed  non-uniform generalized cylinders 
matches more real soil pore galleries  than the uniform 
generalized cylinders and can be used in the analyze of 
soil burrow systems [15,18].  We also provide formulas to 
compute some porous media quantitative characteristics 
from this description and give some illustrations with real 
soil data. To have an autonomous and continuous 
platform computation and thus minimize the 
approximation errors, the Java language and its associate 
libraries were used to implement the computation steps 
on one platform. 

   

 
 
Section 2 gives an overview of the pore space 

extraction process from computed tomography images. 
The proposed approximation and the images acquisition 
images process are discussed.  Section 3 introduces the 
pore channels description with balls and  the extraction 
procedures.  Section 4 presents the pore channels 
representation with generalized cylinder. Section 5 gives   
formulas and illustrations for the computation of 
quantitative characteristics such as length, tortuosity, 
volume, porosity and saturated hydraulic conductivity. 
Section 6 is about the pros and cons of the uniform and 
non uniform generalized cylinders representation.    

2 3D DESCRIPTION OF MICROSTRUCTURES 

2.1 Pore space extraction 

From a set of 2D computed tomography images (Fig.1, 
Fig.2), volume description is extracted by a 
straightforward superposition process along the same 
axes followed by sampling constraints. The height of each voxel 
is the distance between two CT images along the axes.  
Thus, the primary volume description is a set of voxels. 
The pore space is obtained from thresholding. The result 
is a tridimensional binary image. The binary 
representation allows distinguishing the pore space from 
the core space of the soil volume. The boundary points 
are the points having at least one neighbor that does not 
belong to the pore space. The set of boundary points is 
extracted in three dimensions using the 26-connectivity 
and represent less than 10 % of the pore space voxels [10]. 
Having the boundary of the pore space, the next step is to 
approximate the volume of the pore space by primitives 
that can be used for example to simulate organic matter 
decomposition or fluid transfer inside the pore space. 
Ngom et al [13,14] calculates a minimal set of maximal 
balls that recover the skeleton of the pore space using 
Delaunay tessalation [6,7].  
 
This primary description ensures the conservation of 
topological properties but the approximation by balls 
involves a  loss in volume. Thus the set of balls were 
segmented on simply connected sets that is considered as 
pore channels that is afterward approximated by 
cylinders or uniform generalized cylinders.  However 
there were some limitations such as lost of volume. 
Indeed the uniform approximation process does not take 
into accounts local variation of pore channel radius and 
thus can lead to a shape different from the initial shape. 
To overcome these limitations, in the present study, the 
uniform generalized cylinders concept is extended to the 
non-uniform case to provide a more accurate 
approximation of pore channel. 
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Fig.2 Example of four sections of two dimensional CT 
images 

 

2.2 The Proposed Model 

A non-uniform generalized cylinder is a generalized 
cylinder whose distance between its skeleton and its 
boundaries is not constant along its length. This 
description gives realistic representation of pore channel 
that can save much computing time and memory space 
during simulation inside soil or rock aggregates and can 
be helpful when looking for global characteristics of pore 
space for classification purposes. It provides continuous 
and rounded shaped pores which are interconnected with 
each other via lateral pores. It can also be used in the 
analyze of soil burrow systems such as biopores 
influenced either by deep rooting taproots or earthworms 
in natural conditions [15,18]. 
 
In this work, a unique platform is used for the 
implementation to straighten the successive 
approximation process and to have a good control of all 
the transform steps.  In the previous studies [13,14] the 
used language (C) presented some limitations for 
networked deployment and the two different platforms 
used during the processing steps did not allow  to 
perform dynamic autonomous simulation. In the present 
study, the program has been written in Java and thus can 
be easily transferred in Java Applet, so it can run in the 
internet.  The real time rendering of the model require 3D 
toolbox such as Java3D and JOGL to set up the 3D virtual 
universe [5].  In the whole process, we can at the same 

time compute the approximation and visualize the results 
on a single window with different viewpoints.  

2.3 Images acquisition and description 

To illustrate the proposed description, a computed 
tomography (CT) images soil sample obtained by 
Peth et al [16] from soil aggregates using synchrotron 
X-ray is used. The soil has the following texture:  10% 
sand 70% silt and 20% clay. The soil data have been 
sampled at the experimental research farm 
Rothamünster southern Germany  from an unplowed 
horizon which has been under grassland use since 
1961.   The soil was scanned at the synchrotron 
radiation for x-ray microtomography SR-µCT (at 
DESY, Deutsches Elektronen Synchrotron in  
Hamburg Germany). The resolution was 5.403 µm 
with a dimension of          400x 400x400 voxel sized 
cube.  

A perspective view of the set of images samples is 
presented in Fig 2.   Fig 3 shows examples of CT 
images before and after thresholding. Fig 4 gives an 
example of volume representation computed from 
100 CT images after thresholding.   

 
 

   
 

Fig.3 Extraction of contours points by thresholding: a) gray CT 
image, b) binary CT image. 
 

(a) 3D soil structure after reconstruction of 100 two a.  

 (a) dimensional CT images 

 

a) b) 
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(b) 3D pore soils voxels after thresholding of 
segment of 3D volume 

 
Fig.4 Four different views of the 3D structures 

3 PORE CHANNEL EXTRACTION 

3.1 Description of pores with balls 

From the Delaunay triangulation, balls description of 

pore space is easily generated as a set of Delaunay 

spheres. A Delaunay sphere attached to a tetrahedron 

is the sphere passing through the four vertices of the 

tetrahedron.  The approximation of volume shape by 

balls is obtained by computing for each tetrahedron 

its circumscribed spheres.  And all the centers of 

Delaunay spheres included within the shape gives the 

skeleton [4] which is often called medial axes. From 

this step we obtained a set of disjoint or tangent 

maximal balls describing shape cavities.  Fig 5 gives 

perspectives views of the balls description of pore 

structures with 4000 balls and 50000 balls. 

 

3.2 Pores channels extraction 

We suppose that the pore channel is formed by 

simply connected balls. A connected set of balls is a 

pore channel if and only if [14]: 

1. Each ball of the chain is connected to more 

than two balls in the chain, 

2. Two balls of the chain are connected with 

only one other ball in the chain.  

3. For each ball in the chain that was connected 

to two different balls in the chain, if the ball is 

removed from the chain then the chain will 

be split in two connected components, a 

chain could be built with at least two balls.  
 

4    NON-UNIFORM GENERALIZED CYLINDERS 

APPROXIMATION 

The balls representation is a primary representation of the 
pore channels. However, the generated shapes are far 
from the reality where we have to deal with galleries. 
Thus to strengthen this description, the ball description of 
each pore channel is approximated with generalized 
cylinders. We first approximate the center of the balls 
describing the pore channel with a Hermite spline. Then 
we generate a revolution surface.  

 
 

 
Fig.5 Perspectives views of pore space and pore channels 
description with balls: a) 4000 balls b) 50000 balls c) set of 
of pore channels 
 
Fig 5(c) gives examples of pore channels computed  
from the balls description of Fig 5(b).  
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Fig.6 presents the processing steps during the 
computation of the generalized cylinder. As illustrated, 
the skeleton of the ball chain is first computed from a 
simply connected set of balls. Then, a uniform 
generalized cylinders or a non-uniform generalized 
cylinder is generated from the skeleton taking into 
account the radius of the balls. 

 
 

 
4.1 Generalized cylinder 

There are many definitions of a generalized cylinder. 
But for computations purposes, a definition based on 
controls points is preferred [5,20]. A generalized cylinder 
is described parametrically as follows 

 
𝑃𝑠 (𝑡)  =  [𝑝𝑜𝑠 (𝑡), 𝑟𝑎𝑑] (1) 

 
Where post (t) is a piecewise cubic spline using a series of 
controls points {P0, P1,..., Pn−1} and rad refers to the 
distance between the spline and the contours of the 
spline. In this paper, the control points are the centers of 
balls, rad is a set of numerical values computed from the 
radius of the corresponding balls of the spline and post(t) 
is a parametric curve in 3D expressed as follows 

 
𝑝𝑜𝑠(𝑡)  =  (𝑥 (𝑡), 𝑦 (𝑡), 𝑧(𝑡)), 0 ≤  𝑡 ≤  1  (2) 

 
And 

 
 𝑥(𝑡) = 𝑎0𝑥 + 𝑎1𝑥𝑡 + 𝑎2𝑥𝑡2 + 𝑎3𝑥𝑡3 
 
 𝑦(𝑡) = 𝑎0𝑦 + 𝑎1𝑦𝑡 + 𝑎2𝑦𝑡2 + 𝑎3𝑦𝑡3 (3) 
 
 𝑧(𝑡) = 𝑎0𝑧 + 𝑎1𝑧𝑡 + 𝑎2𝑧𝑡2 + 𝑎3𝑧𝑡3 

  
 
x(t), y(t) and z(t) are in the same form but independent of 
each other except at drawing where they are used 
together to specify a point. We discuss in the following in 
the place of x (t), y(t) and z (t) the parametric function p (t) 
defined as follow  

 
𝑝(𝑡) = 𝑎𝑡3 + 𝑏𝑡2 + 𝑐𝑡 + 𝑔  Where 0 ≤ t ≤ 1 

 

4.2 The spline generation  

To obtain a reasonable degree of continuity and flexibility 
that can be generated and evaluated efficiently, we 
choose to work with the Hermit spline [2]. The Hermit 
curves are specified by two end points p (0) and p (1)) and 
two tangent vectors (p’ (0) and p′ (1)) at the two end 
points.  The equation for a Hermit curve is 

 
𝑝(𝑡) = (2𝑡3 − 3𝑡2 + 1)𝑝(0) + (−2𝑡3 + 3𝑡2)𝑝(1)

+ (𝑡3 − 2𝑡2 + 𝑡)𝑝′(0) + (𝑡3 − 𝑡2)𝑝′(1) 
 
which is expresses in the matrix form as follow 
 

 
𝑝(𝑡) = (𝑡3𝑡2𝑡  1)   2   -2   1   1      p (0) 
      -3  3 -2  -1    p (1)   

    0   0   1   0 p’ (0) 
         1    0   0   0     p’ (1) 
      (5) 

In our model p (0) and p (1) are the coordinates of two 
adjacent control points Pi and Pi+1. The tangents to the 
end points p′ (0) and p ‘(1) are respectively Pi+1−Pi and 
Pi+2−Pi. Thus  

 
𝑝(𝑡) = (𝑡3𝑡2𝑡  1)     2   -2   1   1             Pi 
    -3    3   -2   -1         Pi+1   

    0   0   1   0 Pi+1 - Pi 
      1    0   0   0      Pi+2 – Pi+1 

      (6) 
Fig.6 Generalized cylinder: a) connected chain of balls, b) spline 

computed from the center of the balls, c) uniform generalized 

cylinder , d) non-uniform generalized cylinder 

4.3 Uniform Generalized Cylinder (UGC) 

A generalized cylinder with constant distant between the 
spline and the contours points is called uniform 
generalized cylinder [14].  The latter distance is called the 
radius of the uniform generalized cylinder.  
 
The parametric function of equation 1 used to describe 
the UGC becomes 

 
𝑃𝑠(𝑡) = [𝑝𝑜𝑠(𝑡), 𝑟𝑎𝑑]  (7) 

 
Where rad is the maximal balls mean radius.   
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  The generation of the surface is done easily with a 

circle function c (u) according to post (t) to generate the 
surface of the uniform circular generalized cylinder. The 
uniform generalized cylinder is a straightforward way to 
approximate connected set of balls with 3D tubular shape. 
However sensibility to extreme values of the radius of 
balls is one of the main disadvantages. Indeed, little or 
great values of a radius in a chain of balls can greatly 
change the volume of the CGU computed from the ball 
chain as illustrated in Fig.6. Thus, to overcome this 
drawback, we defined the notion of non-uniform 
generalized cylinder.  

 
 

6.1 Non Uniform Generalized Cylinder (NUGC) 

If the distance between the skeleton and the contour 
points of the generalized cylinder is not constant, then we 
call it a non-uniform generalized cylinder. The parametric 
equation 1 become in this case  

 
 𝑃𝑠(𝑡) = [𝑝𝑜𝑠 (𝑡), 𝑟𝑎𝑑]  (8) 

 
where rad is a set of local radius.  
 
The choice of rad should be done efficiently to avoid 
continuity issues during the NUGC generation. Indeed, 
arbitrary radius will lead to subset of generalized 
cylinders like the one illustrated in Fig 8. 

 
 Let B = {𝐵1, . . . , 𝐵𝑛} the associated balls of a set of control 
points P = {𝑃1, . . . , 𝑃𝑛}. The set of NUGC local radius rad = 
{𝑟1, . . . , 𝑟𝑛} is defined as follow  

 
  𝑟𝑖  If I ∈ {1, 𝑛} 
 
𝑟𝑎𝑑𝑖 =  𝑟𝑖−1 + 𝑟𝑖 + 𝑟𝑖+1 / 3     If I ∈ {2, … , 𝑛 − 1} 

 
      (9) 

 

 

Fig.7 Uniform and non-uniform generalized cylinders computed from 

connected set of balls 

 

 

 
Fig.8 Continuity for CGUN generation: a) discontinuities on the 

boundary after computation b) continuity on the boundary 

 
One of the advantages of defining local radius by 
equation 9 is the preservation of local topological and 
geometrical characteristics of pore channels. As 
illustrated in Fig 6, the non-uniform generalized cylinders 
matches more porous channel, than the uniform 
generalized cylinders. In the sequel, we provide way to 
compute some quantitative characteristics from the non-
uniform generalized cylinders representation. 

 

5 QUANTITATIVE CHARACTERISTICS COMPUTATION 

ON THE GC 

In [14], there were no clues on how to compute the length 
or the volume of a generalized cylinder. However, this is 
essential when we want to run simulation of physical 
process inside the approximated shape. Thus, in the 
following, formulas to compute quantitative 
characteristics are proposed and illustrated in the uniform 
case and in the non-uniform case. The length is the same 
for the two cases, but the volume varies according to the 
uniform generalized cylinder or non-uniform generalized 
description. Thus to simplify the notation, we will refer to 
UGC when the computed characteristics are the same for 
the uniform generalized cylinders and non-uniform 
generalized cylinders. 

5.1 Length computing 

Let’s us suppose that we computed a generalized cylinder 
from n balls. The associated generalized spline has been 
extracted from n control points (centers of the balls)  
{P0, ...., Pn−1}. Let 𝑃𝑖𝑃𝑗  be the length along the spline 
between two control points Pi and Pj. Then by 
construction of 𝑝𝑜𝑠𝑖(t)  

 
𝑃𝑖𝑃𝑖+1  = || ∫ 𝑝𝑜𝑠𝑖𝑑𝑡 ||   (10) 

Thus 
 𝑙 = 𝑃0𝑃𝑛−1 =  ∑|∫ 𝑝𝑜𝑠𝑖(𝑡)𝑑𝑡| (11) 
 
From equation 6, we have 
 

∫ 𝑝𝑜𝑠𝑖(𝑡)𝑑𝑡 = 𝑃𝑖 ∫(2𝑡3 − 3𝑡2 + 1)𝑑𝑡 + 𝑃𝑖+1  ∫(−2𝑡3 +
3𝑡2)𝑑𝑡 + (𝑃𝑖+1 − 𝑝𝑖) ∫(𝑡3 − 2𝑡2 + 𝑡)𝑑𝑡 + (𝑃𝑖+2 −
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𝑃𝑖+1) ∫(𝑡3 − 𝑡2)  
 
It follows that 
 

∫ 𝑝𝑜𝑠𝑖(𝑡)𝑑𝑡 =  
1

12
𝑃𝑖 +  

1

12
𝑃𝑖+1 +

1

12
(𝑃𝑖+1 − 𝑃𝑖)

+  
1

12
(𝑃𝑖+2 − 𝑃𝑖+1) 

 
Thus 
 

∫ 𝑝𝑜𝑠𝑖(𝑡)𝑑𝑡 =
5

12
𝑃𝑖 +

8

12
𝑃𝑖+1 +  

1

12
𝑃𝑖+2   (12) 

Finally, from equation 11 we have  
 

𝑙 =  ∑ ‖∫
5

12
𝑃𝑖 +

8

12
𝑃𝑖+1 +  

1

12
𝑃𝑖+2‖   (13) 

The length gives insight on some key characteristics 
like tortuosity of the pore galleries. 

5.2 Volume computing 

1) Uniform case: In the uniform case, the UGC radius 
is defined as the mean of its associated balls. 
Thus, the UGC volume can be computed using 
the following formula  
 

𝑉 = ||𝑙 ∗ 𝑆||  (14) 
 
Where l is the length of its skeleton which is here a 

spline computed from the center of its associated balls 
and V = 2πr where r is the main of the chain balls radius. 
From equation 13 it follows  

 

𝑉 = 𝑆 ∑ ‖∫
5

12
𝑃𝑖 +

8

12
𝑃𝑖+1 +  

1

12
𝑃𝑖+2‖𝑛 − 1

𝑖 = 0   (15) 

Fig 8 (a) gives a comparison of volume computed with 
the proposed CGU based model and the one computed 
from the corresponding set of balls. As illustrated, the 
shape of the two curves is the same even if higher volume 
is noted with the uniform generalized cylinder 
approximation. This is the consequence of the fact that we 
recover part of information that was lost during the chain 
balls approximation from the voxel representation. 

 
2) Non Uniform case: In the non-uniform case, the 

generalized cylinder has local radius given by 
equation 9. The UGC volume can be computed 
using the following formula 

 
𝑉 =  ∑ ||𝑙𝑖 ∗ 𝑆𝑖||𝑖   (16) 

 
Where 𝑆𝑖 is the local surface of the corresponding circle 

with radius the local radius given by equation 9 and 𝑙𝑖 is 
the length between two controls points defined as follow 

 

𝑙𝑖 = 𝑃𝑖𝑃𝑖+1 =  ∫ 𝑝𝑜𝑠𝑖(𝑡)𝑑𝑡
1

0
  (17) 

It follows then from equation 17, that  
 

𝑉 =  ∑ 𝑆𝑖 ‖∫ 𝑝𝑜𝑠𝑖(𝑡)𝑑𝑡
1

0
‖𝑖   (18) 

 
From equation 13, we have  
 

𝑉 =  ∑ 𝑆𝑖||𝑙𝑖||𝑖   (19) 
 
Where  

 

𝑙𝑖 =  
5

12
𝑃𝑖 +

8

12
𝑃𝑖+1 −  

1

12
 𝑃𝑖+2 

 

Fig.9 Evolution of the volume computed from the models of pore 

channel: connected set of balls, uniform generalized cylinder 

(UGC) and non-uniform generalized cylinder (NUGC)  
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Fig.9 (c) gives an overview of the evolution of pore 

channels volume according to the description with simply 
connected balls chain, uniform generalized cylinder and 
non-uniform generalized cylinder.  Fig.9 (c) shows that the 
volume decrease according the NUGC, UGC and 
connected set of balls description. It’s also highlight the 
fact that non uniform generalized cylinders matches more 
the pore channel shape than the generalized cylinder. 
From the length and the volume we can easily compute 
other quantitative characteristics such as tortuosity, 
porosity and saturated hydraulic conductivity. Other soil 
water properties such as water content and water 
saturation can also be easily derived. Thus this 
representation can be further used for quantitative 
simulation inside the pore space. 
 
The shape of curves is the same and the volume decrease 
according to the type of description: NUGC, UGC and 
connected set of balls. This difference is due to the local 
quantitative information loss during the approximation 
process. However, it is worth noting that formula to 
compute uniform generalized cylinder volume is easier than 
computing non uniform generalized cylinder. 

5.3 Tortuosity   

The tortuosity is usually defined as the rapport between the 
length of the shape skeleton and the distance between the 
two end points of the skeleton. For connected set of balls 
representation, Ngom and al. [13] proposed to compute the 
tortuosity by taking the rapport between the sum of the balls 
diameter and the distance between the two end points of the 
connected chain. This proposed method will overestimate 
the tortuosity because the length of the skeleton is computed 
as sum of the balls diameters segments. For the generalized 
cylinders representation, the skeleton is a spline curve and 
the skeleton length is by construction the generalized 
cylinder length.   
The tortuosity of a generalized cylinder is easily computed 
easily by using the following equation 

 
𝑡 =   𝑙/𝑑  (20) 

 
Where 𝑙 is the skeleton length given by equation 13 

and d the distance between the two end points of the 
generalized cylinder.  

 

5.4 Satured Hydraulic conductivity 

The accurate estimation of hydraulic conductivity is 
important for many geotechnical engineering 
applications, as the presence of fluids affects all aspects of 
soil behavior, including its strength [12]. Saturated 
hydraulic conductivity is a key indicator to how fast 
water moves. It is usually estimated using cylindrical 
column [13,1,26].  

 
(a) Usual case: cylindrical column 

(b) Generalized cylinders as piecewise cylindrical columns 

 

Fig.10 Soil water potential estimation with primitives: the generalized 

cylinder is subdivided by piecewise cylindrical columns before doing 

the estimation 

 
1) Cylindrical based method: The method is based on a 

cylindrical column (Fig.10 (a)). In saturated flow, the 
saturated hydraulic conductivity of water in soil is given 
by [NGMP11] 

 

𝐾𝑠𝑎𝑡 =  
𝑄

𝐴
 

𝐿

𝜑1−𝜑2
   (21) 

Where 𝑄 is the volume of water in time t, 𝐴 is the area 
of cross section, 𝐿 is the length of the cylindrical column, 
𝜑1 and 𝜑2 are water potential at point 1 and at point 2. 

 
 

2) Generalized cylinder based method: We consider a 
channel approximated by a generalized cylinder 
that can be uniform or non-uniform. We 
generalized the usual method on our method, by 
approximating the generalized cylinders by 
piecewise cylindrical column. This can be done 
by straightforward sampling as illustrated by 
Fig.10(b). In the case of saturated flow, the 
saturated hydraulic conductivity given by 
equation 21 becomes  
 

𝐾𝑠𝑎𝑡 =  ∑
𝑄𝑖

𝐴𝑖
 ∗  

𝐿𝑖

𝜑1𝑖−𝜑2𝑖
   (22) 

Where 𝑄𝑖 is the volume of water in time t, 𝐴𝑖 is the area 
of cross section of the section generalized cylinder, 𝐿𝑖 
length of the section of generalized cylinder, 𝜑1𝑖 and 𝜑2𝑖 
are water potential at point 𝑖1 and at point 𝑖2.  
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3) Uniform generalized cylinder based method: If the 
channel approximation is performed with 
uniform generalized cylinders, then it follows 
from equation 13 that 

  

𝑄𝑖 = 𝑆𝑖𝑙𝑖 = 𝑆𝑖  ||
5

12
𝑃𝑖 +

8

12
𝑃𝑖+1 −

1

12
𝑃𝑖+2 ||  

Thus the detailed saturated hydraulic conductivity 
becomes  

 

𝐾𝑠𝑎𝑡 =  ∑
𝑆𝑖‖

5

12
𝑃𝑖 +

8

12
𝑃𝑖+1 −

1

12
𝑃𝑖+2‖

𝐴𝑖
∗  

𝐿𝑖

𝜑1𝑖−𝜑2𝑖
   (23) 

4) Non uniform generalized cylinder based method: If 
the channel approximation is performed with 
non-uniform generalized cylinders, then it 
follows from equation 20 that  

 

𝑄𝑖 =  ∑ 𝑆𝑗 ||𝑙𝑗||𝑗   

Where  
 

𝑙𝑗 =
5

12
𝑃𝑗 +

8

12
𝑃𝑗+1 −

1

12
𝑃𝑗+2 

Thus, from equation 22, we have 
 

𝐾𝑠𝑎𝑡 =  ∑
∑ 𝑆𝑗‖𝑙𝑗‖𝑗

𝐴𝑖
𝑖 ∗

𝐿𝑖

𝜑1𝑖−𝜑2𝑖
             (24) 

5.5 Porosity 

Porosity is the rapport between the volume of pore 
and the total volume  

 

ф =   𝑉𝑝/𝑉𝑇    (25) 

Where 𝑉𝑝 is the volume of pores and 𝑉𝑇 the total 
volume. If the pores are approximated with 

 uniform generalized cylinder, then from 
equation 13 and equation 25, the porosity is 
given by 
 

ф =  
𝑆𝑖 ∑ ||

5
12

𝑃𝑖 +
8

12
𝑃𝑖+1 −

1
12

𝑃𝑖+2 || 𝑛−1
𝑖=0

𝑉𝑇

   (26) 

 non-uniform generalized cylinder, then from 
equation 20 and equation 25, the porosity is 
given by 
 

 

ф =
∑ 𝑆𝑗‖𝑙𝑗‖𝑗

𝑉𝑇

   (27) 

Where  

𝑙𝑗 =
5

12
  𝑃𝑗  +

8

12
𝑃𝑗+1  −

1

12
𝑃𝑗+2 

6 RESULTS AND DISCUSSION 

6.1 Compactness  

Approximation with generalized cylinders is 
straightforward way to gain on compactness of the 
representation by reduced the number of primitives used 
to generate the shape. Let us define this number by the  
degree of compactness.  

 
Fig.11 Shape of the generalized cylinders according to the radius 

of the connected balls set: the variability of the computed shape is 

0.2994 for b) and 2.048 for a); the degree of compactness is 26 for 

b) and 24 for a) 

 
.Fig 11 gives examples where this degree is higher than 

20 in the cases of balls representation and 1 in the case of 
generalized cylinder representation. 

6.2 Approximation error 

When the radius of balls used to generate the 
generalized cylinders are not the same, then the uniform 
generalized cylinder approximation is not suited. As the 
generalized cylinder is computed from the centers of the 
balls chain by taking into account the local radius 
variation, then the standard deviation of the radius of 
these balls gives a good indication of quality of 
approximation error. Let 𝐶 =  {𝐵1, . . . , 𝐵𝑛} a connected set 
of balls chain and 𝑅 =  {𝑟1, . . . , 𝑟𝑛} their corresponding 
radius. The variability of C is defined as the standard 
deviation of the set of radius R of C.  
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The variability quantifies the dispersion around the 

mean of the radius. If all the balls of C have the same 
radius, then the variability is equal to zero. And more 
they are differences between the  balls radius of C, more 
the variability is high and more the shape of the 
computed non-uniform generalized cylinder is different 
of the shape of the uniform generalized cylinder as 
illustrated by Figure 10. 

 
 In the first case (Fig.11 a), the mean of the 

radius is 19.896µm and the variability is 11.065 
µm. It is easy to see that the approximation 
with non-generalized cylinder is better than 
the approximation with uniform generalized 
cylinder. 

 In the second case, the mean of the radius is 
10.7827µm and the variability is 1.6116 µm. 
The shapes computed from the two 
approximation procedures are practically the 
same. 

From these observations we can infer that the 
approximation error is lower for the non-uniform 
generalized cylinders than for the uniform generalized 
cylinders. And as a real soil pore galleries have 
heterogeneous structure, in most cases their variability 
will be high. Thus for quantitative measures, 
representation with non-uniform generalized cylinders is 
more suited. 

6.3 Quantitative characteristics 

Most pore space quantitative characteristics 
computation integrated the primitive’s length or volume 
in their equation. As illustrated by the previous section, 
even if the length is the same for the two types of 
primitives there are difference in volume between the 
uniform generalized cylinders and no uniform 
generalized cylinders owing to the local variability of the 
later one.  

 

6.4 The processing steps 

Our approach is based on an efficient implementation of the 
approximation process design on an only one platform that 
can be transformed if needed on net web application. Thus, 
all the computer code used this work have been written in 
Java. This enables us to have a more autonomous and 
dynamic computation processes. We can have different 
views of the pore space as set of points, balls, uniform 
generalized cylinders and non-uniform generalized 
cylinders. Beside, we can also do real time transformations 
and update the representation very straightforwardly. 

 



7 CONCLUSION 

We proposed a realistic description of soil pore space 
which can be used to simulate soil functions. This 
description is an hierarchical representation of pore channel 
using geometric primitives. We have proposed 
representation of pore channel with non-uniform 
generalized cylinders. We showed that these latter matches 
more real pore system than other primitives by used new 
concepts such as degree of compactness and variability. 
These two concepts gives insights on geometrical and 
topological approximation error.   We also provide formulas 
to compute quantitative characteristics on pore channels or 
burrow systems such as length, tortuosity, porosity and 
hydraulic conductivity. We show that all the processes can 
be done using an only one platform which enables 
visualization of the pore space as set of points, balls, uniform 
generalized cylinders and non-uniform generalized 
cylinders. Illustration and comparative analysis have also 
been provided.  

 In the future, we intend to simulate some soil 
functions (organic matter decomposition, water 
movement through soil, roots penetration, burrowing 
activity of earthworms, impacts on the agricultural 
management) inside the volume computed by the 
proposed description. Our aim is to build a continuous 
real time simulation platform computed inside the 
volume shape extracted after the reconstruction of the 
pore space of the soil CT images.  
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