
INTERNATIONAL JOURNAL OF ADVANCED STUDIES IN COMPUTER SCIENCE
AND ENGINEERING

IJASCSE VOLUME 5, ISSUE 2, 2016

02/29/2016

WWW.IJASCSE.ORG 15

On Board Data Handling (OBDH) based on

PC104
Haryono

Indonesian National Institute of Aeronautics and Space (LAPAN)

Jl. Cagak Satelit KM.04 Rancabungur – Bogor 16310

haryono@lapan.go.id

Abstract— Developing OBDH for satellite should

consider the condition of the existing research

facilities and resources in an institution. Many

OBDH developments have been failed because not

considering the capabilities of the institution.

Considering to the capabilities of the institution is

important, because it is major factor whether

building OBDH can be realized successfully or not.

System Design OBDH that has great opportunities

to success in our research environment is to

concentrate on developing the software for the

OBDH. The software must be supported with the

appropriate hardware which has been recognized as

space qualified. Therefore selection board which

has space qualified is important method: it has been

conducted in this research. To develop good

software in the term of perspective programming,

fast, standardize, testable, multitasking: Operating

System has been implemented in this OBDH.

This research showed the OBDH development is

pretty fast and more realizable to the limited

institution resources. This research has produced an

OBDH prototype in terms of hardware/board

selection and software development.

Keywords- On Board Data Handling, PC 104,

Multitasking, Close loop Testing.

I. INTRODUCTION

In our institution the toughest obstacle in building the

OBDH is about the hardware/board. It is because the

human resources and facilities are limited, especially in

terms of hardware manufacturing and hardware testing.

Many computation board developments for space have

been conducted, most of them use very intensive

resources and not easy to achieve in a limited resources

(Human and Facility Resources), they use FPGA to

achieve multitasking environments [1][2][3]. Simple

OBDH development also have been conducted but

difficult to fulfill the requirement when the operation of

satellite is become complex [4]. It just uses

microcontroller to handle many data from other sub

systems, when many data need to be handled and

complex operation need to be applied, simple OBDH is

difficult to fulfill the requirement.

In order to achieve the goal to build an OBDH

prototype which is faster, easy and can fulfill the

requirement as much as possible: this research was

conducted.

It is decided to use a hardware based on PC104 which is

available in the market. PC104 was chosen, because it

has a high flexibility and have clear standards, so it will

be easier to develop the software. Hardware should

fulfill the requirement; it should able to work in space.

This research will concentrate on development the

software of OBDH, development of hardware was still

done but for minor part. The objective of this research

is to develop the OBDH prototype in the limited

resources with fast development and realizable to be

implemented.

II. METHODS

The method to achieve the objectives is:

1. Understanding the hardware criteria for space and

selecting of the board that is available in the market

with space qualified board.

2. To develop the software of the OBDH: Requirement

Analysis (List the satellite requirement to the OBDH).

System Design (Design of the software which is

possible to be implemented on the hardware, including

the tool and the Operating system). Implementation

(Building the software). Integration (Integrating the

software and the hardware). And last is Testing .

III. OBDH HARDWARE CRITERIA

Board selection method: PC104 was selected due to its

availability in the market and its standard; many of

them have been prepared for Flight Model (FM) at an

INTERNATIONAL JOURNAL OF ADVANCED STUDIES IN COMPUTER SCIENCE
AND ENGINEERING

IJASCSE VOLUME 5, ISSUE 2, 2016

02/29/2016

WWW.IJASCSE.ORG 16

affordable price below $1500 each board. The Board

has conducted a test of temperature, vibration and

radiation. Generally to make sure the selected OBDH

board is space qualified; it should have been conducting

a qualification testing. Qualification testing includes:

1. Testing the thermal: to find the resistance of OBDH

to the thermal environment, it is cyclic environment like

in orbit, the sunlight and eclipse phase.

2. Testing vacuum: to find the resistance of OBDH in a

vacuum environment. Generally, a phenomenon that

occurs in a vacuum environment is Outgasing of

materials / components. Outgasing can cause the

OBDH not working properly.

3. Testing of vibration: to determine whether OBDH

still work even the vibration is occur, this is due to

when launching the satellite will have more vibration.

4. Testing Electromagnetic Interference (EMI): to

determine the level of electromagnetic emissions

generated and its effect to satellite components.

Without doing all kinds of testing above, the hardware

that is selected has already been testing, therefore the

job of building OBDH will be minimized, the limited

facility resources and human resources do not become

an obstacle anymore. It is our method to fast in the

development of OBDH, so that can minimize the time

in development of the hardware.

In Figure 1 showed the hardware that has been

designed. It consists of several PC104 boards, one

which is lowest rack as main board and others are

extended board, below the detail of each board (some

have been tested with XTEST (temperature test

certificate) at -40C to + 85C operation:

1. MPL-MIP405-3-XTEST PC / 104-Plus using

processor IBM405GPr PowerPC (up to 400MHz)

with 2 x USB, there are 4x RS232 and 10/100

Ethernet on a header that is used as a debugging

and programming, 128MB SDRAM and 8MB

Flash soldered on board [5].

2. MPL-OSCI-8MIX-XTEST PC / 104-Plus is a

module with 8 serial lines (RS232 / 422/485),

which can be selected according to the required

protocol [6].

3. MPL-IDE2CF-1A44i-XTEST is the board to put

the Compact Flash that can be locked in order not

to lose when subjected to large vibration [7].

4. PC 104 Custom, it has task to acquire the

temperature and to measure the current and

voltage of OBDH.

Selection to PC104 standard is because these standards

have had a heritage that flies in the orbit. PC104 board

is designed to facilitate the achievement of the

objectives of computerization efficiently as needed.

PC104 is a board that has a standard in terms of Form

and Bus [8]. With those kind of standard the

development of the operating systems and integration is

much easier. Bus communication using the standard

(ISA and PCI) led to high compatibility with various

operating systems available.

The main board to be used is MPL-MIP405-3. The

board has been done vibration test, temperature test and

radiation test [9]. The board has been widely used on a

variety of satellite design [10] [11] and [12]. Extended

Board include MPL-OSCI-8MIX all accompanied by a

certificate temperature test. Figure 1 is the integration

of each board to the main board. Custom PC104 board

is in the form of custom board will be custom designed

to fit the needs of specific sub-systems.

Figure 1: Hardware of the OBDH

Communication between boards is using PCI bus and

IDE bus. The bus is a bus standard that is often used by

the existing operating system (e.g. Linux / Windows).

Voltage lines each board has been provided in the

socket which has been provided by default via PC104

connector.

IV. SOFTWARE DESIGN AND IMPLEMENTATION

Main board of OBDH is MPL-MIP405-3, it consist

PPC 405 processor from IBM. To make the

programming process is faster and easier, Linux

Operating system was implemented. It just uses the core

named Linux Kernel. The sub systems which have been

connected are below:

1. Ground Segment (1 port).

2. Wheel Drive Electronics (WDE) (3 devices have

been setup).

3. Star Sensor (2 devices have been set up).

4. Battery (1 Battery).

5. GPS (1 GPS).

6. Custom PC104 (1 port).

The task was divided based on the receiver data from

other sub systems, the data flow is shown in Figure 2.

Each Task is available each time the sub system

sending the data to the OBDH. Each Task can process

INTERNATIONAL JOURNAL OF ADVANCED STUDIES IN COMPUTER SCIENCE
AND ENGINEERING

IJASCSE VOLUME 5, ISSUE 2, 2016

02/29/2016

WWW.IJASCSE.ORG 17

their task without any wonder to be interrupting other

sub system. Ground Segment Communication Task has

function to process the data or command from Ground

Segment System. OBDH processes the data by

extracting, formatting and to be determined what should

be done based on which was received, either to be

forwarded to other sub system or just being processed

in the OBDH itself. WDE Communication Task, Star

Sensor Communication Task, Battery Communication

Task, GPS Communication Task and Custom PC104

Communication Task are act to process the data from

other sub system. After processing is finish in each task,

the task can decide whether to send the data to Ground

Segment directly or keep in OBDH Memory.

Total port which has been used in OBDH is 9 ports, and

can be expanded easily as required. All port should be

available all time; therefore implementing operating

system is increase the reliability. Operating system

image generation from the beginning to the end has

been talked in [13]. At here will focus on software

development of the OBDH in operating system which

has been prepared in PC104. Next discussion will talk

about each software development implementation in

OBDH.

IV.1. Setup the Port

Each sub system has different port to communicate with

OBDH. Therefore it is necessary to setup the port

according to the characteristic of Sub system. Below is

the setup port to communicate between subs systems:

IV.1. 1. Initiation of ports

Port variable is where the port of OBDH that is used,

for example: /dev/ttyS2, dev/ttyS3, /dev/ttyOS0,

/dev/ttyOS2, /dev/ttyOS4, /dev/ttyOS6, /dev/ttyOS1.

ttySx is the port which are placed in Main OBDH.

ttyOSx is the port which are placed in Extended OBDH.

IV.1. 2. Initiate the termios

Before setting the speed and other setting need to

prepare the termios in memory. Termios is struct that

consist: input mode flags, output mode flags, control

mode flags, local mode flags, line discipline, control

characters, input speed, output speed. Below is the

initiate of the termios in memory.

IV.1. 3. Setting the Speed

Speed is the baud rate, how much speed that is required

to be able communication between sub systems. For

example communication with Ground Segment uses

9600 bp

s.

cfsetospeed is the output speed and cfsetispeed is the

input speed.

IV.1. 4. Setting the control characters

To make easy in communication with other sub system,

to read block each 1 character was setup. This is

selected because easy to handle various data which are

coming to OBDH. By using 1 character per one time

received will able to calculate how many characters

which are coming easily and also can easy to give a

validation to character stream which are coming.

The OBDH has been received the data successfully

without having an overlap, it is important to setting

VMIN/VTIME properly, because it is having impact in

capturing all the data in one burst without having an

overlap. “VMIN > 0 and VTIME > 0”, this is the most

common mode of operation, and consider VTIME to be

an intercharacter timeout, not an overall one, this call

should never return zero bytes, can be read in [14].

IV.2. Create Tasks

To create a task contains 2 parts. Below are parts in

creating the Task:

IV.2.1. Initiate the function

The function should use a reference, because it will be

passing to the pthread_create.

IV.2.2. Create the task

tid is the Thread identifiers, each task will have an

unique ID. After calling this code the TaskRxOsci1 will

have own thread and will be executed separately or in

parallel manner.

struct termios tty;

memset (&tty, 0, sizeof tty);

cfsetospeed (&tty, 9600);

cfsetispeed (&tty, 9600);

tty.c_cc[VMIN] = 1; // read block 1 char

tty.c_cc[VTIME] = 5; // 0.5 seconds read

timeout

int fd = open(port, O_RDWR | O_NOCTTY);

pthread_t tid[15];

void* TaskRxOsci1(void *arg);

pthread_create(&(tid[1]), NULL, & TaskRxOsci1,

NULL);

INTERNATIONAL JOURNAL OF ADVANCED STUDIES IN COMPUTER SCIENCE
AND ENGINEERING

IJASCSE VOLUME 5, ISSUE 2, 2016

02/29/2016

WWW.IJASCSE.ORG 18

Figure 2: Multitasking Data flow of OBDH

IV.3. Ground Segment (GS) Communication Task

In this task handle the communication between the

ground segment and the OBDH. In Figure 3 shows the

communication data flow in GS communication task.

Task will handle various data from GS transmit, it

should able decoding the data and able to transmit to

sub system destination correctly. At this task also

format the data according to the sub system format.

In Figure 4 shows about the snippets code for the

Ground Segment (GS) Communication Task. It has

while inside the function, because the function is

executed parallel between other function and task,

therefore it is not having impact to other task, because

has independently time execution.

read(PortRxMainBoard2,&rxChar,1)>0 will always in

standby mode until PortRxMainBoard2 receiving the

data from GS. As VMIN is 1, therefore will read every

one character and the character data will be hold by

rxChar variable. “#” is the first character to be sent to

the OBDH, so each time receives the “#” will reset the

data. ”rxMainBoard2Data[1] == 0x01” is checking to

where sub system, the data will be sent, 0x01 is the ID

of the sub system, it was connected to

PortRxMainBoard3. So the rest of the data will be sent

to the PortRxMainBoard3 via

write(PortRxMainBoard3,&rxMainBoard2Data[i],1).

Figure 3: Data Communication Flow in Ground

Segment (GS) Communication Task

Ground Segment

Communication Task

WDE Communication

Task

Star Sensor

Communication Task

Battery

Communication Task

GPS Communication

Task

Custom PC104

Communication Task

OBDH

OPERATING

SYSTEM

Ground Segment

 Sub System

WDE

Sub System

Star Sensor

Sub System

Battery

Sub System

GPS

Sub System

Custom PC104

Sub System

Time

Management

Task

Custom

PC104

GS

Ground

Segment (GS)

Communication

Task

WDE

STS

Batrey

INTERNATIONAL JOURNAL OF ADVANCED STUDIES IN COMPUTER SCIENCE
AND ENGINEERING

IJASCSE VOLUME 5, ISSUE 2, 2016

02/29/2016

WWW.IJASCSE.ORG 19

Figure 4: Snippets Code for the Ground Segment

(GS) Communication Task

IV.4. Wheel Drive Electronics (WDE) Task

Figure 5 shows the Data Communication Flow in

Wheel Drive Electronics Task. After WDE receiving

the command data from the OBDH, WDE will replay

what data is needed by the OBDH. WDE will know

what data that is needed by the OBDH. OBDH will

format the data properly to get the respond from WDE.

Figure 6 shows the Snippets Code for Wheel Drive

Electronics Task. PortRxMainBoard3 is the port for

WDE1, therefore the task read the data from

PortRxMainBoard3. Each character is read then will be

collected in rxMainBoard3Data. The last character in

each stream data from WDE will be 0xAC. Therefore

after got the 0xAC character, the data is ready to be

used for the next process or operation, at here it just

send to the Ground Segment (PortRxMainBoard2).

Figure 5: Data Communication Flow in Wheel Drive

Electronics Task

Figure 6: Snippets Code for Wheel Drive Electronics

Task.

IV.5. Star Sensor Task

The task in star sensor is near same with the WDE task,

the different in checking the data which are coming

from Star Sensor. At Figure 7 shows Snippets Code for

Star Sensor Task, it will process the data after found the

condition which is required. For example

if((FirstRxDataToSts1 == 0xA7 && IndexRxSTS1 ==

3120), it will check whether the first data from Star

sensor is 0xA7 and the number of stream data is 3120,

if correct will be consider the data and will be processed

the data.

For the Battery, GPS, Custom PC104 Tasks will not so

different to other task, the most different part will be in

checking the format of the data each sub system which

is connected to the OBDH. It should check the format

of the data which is coming, if satisfied the condition

which is required then will be processed the data for the

operation used. After implemented in developing the

software for the OBDH it can be known how essay to

program the OBDH.

Figure 7: Snippets Code for Star Sensor Task

WDE

Wheel Drive

Electronics Task GS Receiver

if((FirstRxDataToSts1 == 0x00 && IndexRxSTS1 ==

152) ||

(FirstRxDataToSts1 == 0x01 && IndexRxSTS1 == 16) ||

(FirstRxDataToSts1 == 0xA0 && IndexRxSTS1 == 11) ||

(FirstRxDataToSts1 == 0xA7 && IndexRxSTS1 ==

3120) ||

(FirstRxDataToSts1 == 0xA8 && IndexRxSTS1 == 180)

||

(FirstRxDataToSts1 == 0x4D && IndexRxSTS1 == 8) ||

(FirstRxDataToSts1 == 0x02 && IndexRxSTS1 == 32))

{

 //Processing the data

}

void* TaskRxMainBoard2(void *arg)

{

 while(1)

 {

 if (read(PortRxMainBoard2,&rxChar,1)>0)

 {

 if(rxChar == '#')

 {

 index = 0;

 memset (&rxMainBoard2Data, 0, sizeof

 rxMainBoard2Data);

 }

 rxMainBoard2Data[index] = rxChar;

 index +=1;

 if(rxMainBoard2Data[0] == '#'

 && rxChar == '&')

 {

 if(rxMainBoard2Data[1] == 0x01)

 {

 for (i = 3 ; i < index -1 ; i++)

 {

write(PortRxMainBoard3,&

 rxMainBoard2Data[i],1);

void* TaskRxMainBoard3(void *arg)

{

 while(1)

 {

 if (read(PortRxMainBoard3,&rxChar,1)>0)

 {

 rxMainBoard3Data[index] = rxChar;

 index +=1;

 if(rxChar == 0xAC)

 {

 write(PortRxMainBoard2, "#",1);

 write(PortRxMainBoard2, &deviceId,1);

 write(PortRxMainBoard2,

&rxMainBoard3Data,

index);

 write(PortRxMainBoard2, "&",1);

INTERNATIONAL JOURNAL OF ADVANCED STUDIES IN COMPUTER SCIENCE
AND ENGINEERING

IJASCSE VOLUME 5, ISSUE 2, 2016

02/29/2016

WWW.IJASCSE.ORG 20

V. TESTING AND ANALYSIS

V.1. Software Testing Analysis

Testing is conducted by the Functional Test and

Qualification Test. Functional tests are unit tests and

integration tests. Prior integration, unit tests has been

conducted. Unit Test aims to ensure that each code

works according to the desired. Any code that has been

committed, it has been treated in the form of unit

testing. Other testing that related to the software testing

is testing data communications with other sub-systems.

For example, communication with WDE, OBDH

transmits a data to WDE, whether the data is able to be

delivered properly to the WDE or not.

Unit testing is really important to make sure the code is

working as expected and to be expected to maintain of

previous working code. In this discussion will be talked

about some example unit testing that has been done in

Visual Studio. In Figure 8 showed there is a code that

aims to convert from Number to Binary string format

[15]. In the unit testing, it is treating the ConvertToBin

method code whether the method that has been writing

up can work as expected. In Figure 9 showed that

ConverToBin method is called and gave some value in

via parameter, in the first test number 8 has been given

to ConverToBin, ConverToBin should return "1000",

other ways the testing is failed. It was happened to the

next test, if send number “3” should return "11" and if

send number “2” should return "10". By doing unit test

above it can be easily to maintain the existing code so

that not break the existing code.

Figure 8: ConvertToBin method: to convert the

number to string in binary format.

Figure 9: ConvertToBinTest unit test: to test the

convert ConvertToBin method

V.2. Close Loop Testing and Analysis

Close loop testing is to test the port connection to other

sub system. The sub system which has been connected

to the OBDH is listed in the Table 1.

PortRxMainBoardx means the sub system is connected

to the port which is resided in Main Board of OBDH.

PortRxOscix means the sub system is connected to the

port which is available in OSCI Board. Close loop

testing is the test which has aim to test the connectivity

each port in OBDH. The diagram of close loop is

shown in the Figure 10. The data is coming from

Computer via rs232, it will be received by

PortRxOsci3, after that the data is processing in OBDH

to be sent to the PortRxOsci1 via PortRxOsci0, from

PortRxOsci1 will be transmitted to the PortRxOsci2,

from PortRxOsci2 will be transmitted to PortRxOsci6.

From PortRxOsci6 the data will be back to

PortRxOsci0 until reaching to the computer again. The

data which was transmitted from computer should be

exactly same when it was received by computer. This

close loop test is done in a periodically time. More than

12 hours the test was conducted and got the correct

result and passed.

INTERNATIONAL JOURNAL OF ADVANCED STUDIES IN COMPUTER SCIENCE
AND ENGINEERING

IJASCSE VOLUME 5, ISSUE 2, 2016

02/29/2016

WWW.IJASCSE.ORG 21

Table 1. Port connection mapping between OBDH and Sub system

Port In OBDH Protocol
Sub

System
Testing Method

PortRxMainBoard2 RS232 EGSE
Connected to

EGSE

PortRxMainBoard3 TTL WDE 1
Connected to

WDE 1

PortRxOsci0 TTL WDE 2
Close loop hook

1st

PortRxOsci2 TTL WDE 3
Close loop hook

2nd

PortRxOsci4 RS422 STS 1
Connected to STS

1

PortRxOsci6 RS422 STS 2
Close loop hook

3rd

PortRxOsci1 TTL BATREY
Close loop hook

4th

PortRxOsci3 RS232 GPS
Close loop hook

5th

Figure 10: Diagram of close loop test

V.3. Integration Testing and Analysis

Integration Testing is testing the communication between

OBDH and other sub system. In this testing will not

connected to all sub systems, to avoid the complexity of

harnessing, as in this development is just initial phase or just

experiment. In Table 2 showed the connection port in

OBDH and the sub system connectivity. The data which has

been received by OBDH should be correct. The scenario for

this testing is by sending the command data from EGSE to

request the data from WDE and STS. Beside that the test

also gives a command to WDE to rotate the wheel. The test

has been conducted and got the correct data and passed.

The tests which were conducted; the OBDH can go through

each test successfully and getting passed result. Unit test is

helping a programmer and software architect to maintain

their code in the future, so that previous code will not be

break because of new code is coming. The unit test is very

important because the code will eventually goes many and

many.

Close Loop Test was conducted and got success result. The

OBDH can pass the close loop test, each data which is

transmitted from computer was received by the computer

exactly same. This test is helping us when the sub system is

limited and of course this test will dismiss the complexity of

cable wiring in a satellite. Integration testing, this test was

integrating 3 sub systems; they are EGSE, WDE, and STS.

Each of the sub system was able communicate to the OBDH

successfully. This test will represent the ability of the

OBDH to communicate to other sub system. From the

PortRxOsci3

RS232

Process: Receiving and

Transmitting data

PC

PortRxOsci0

TTL

PortRxOsci1

TTL

PortRxOsci2

TTL

PortRxOsci6

RS422

OBDH

Tx

Tx

Tx

Tx

Rx

Rx

Rx

Rx

INTERNATIONAL JOURNAL OF ADVANCED STUDIES IN COMPUTER SCIENCE
AND ENGINEERING

IJASCSE VOLUME 5, ISSUE 2, 2016

02/29/2016

WWW.IJASCSE.ORG 22

various tests above the OBDH can be concluded that can

work smoothly and successfully as per requirement.

VI. CONCLUSION AND FUTURE WORK

The conclusion that can be obtained is by using PC104 and

Operating system; the OBDH development is faster and

more realizable to the limited resource of the institution.

The OBDH prototype has been created within 1 year

successfully, it emphasis in the software development only.

The operating system image has been created and the

software for the operations has also been created. Although

it is not fully completed in a connection to other sub system

because of limitation of the sub system device, it can

represent how easy to develop the OBDH using PC104. The

next research will integrate this OBDH with other sub

systems in one table and to see the behavior and the

operations.

ACKNOWLEDGMENT

This project is supported by Satellite Centre - LAPAN, Mr

Abdul Rahman as Head of Satellite Center LAPAN, Mr

Abdul Karim as Head of Program Satellite LAPAN and my

colleges Mr Fauzi and Mr Taufik. We would like to

acknowledge for their support in this project.

REFERENCES

[1] Y. Bentoutou, “A Real Time EDAC System for Applications

Onboard Earth Observation Small Satellites,” IEEE Trans.

Aerosp. Electron. Syst. - IEEE TRANS AEROSP ELECTRON

SY, vol. 48, no. 1, pp. 648–657, 2012.

[2] J. K. Martin Straka, “Modern fault tolerant architectures

based on partial dynamic reconfiguration in FPGAs,” Proc.

13th IEEE Symp. Des. Diagn. Electron. Circuits Syst.

DDECS 2010, pp. 173 – 176, 2010.

[3] D. C. Deepti Shinghal, “Design and Analysis of a Fault

Tolerant Microprocessor Based on Triple Modular

Redundancy Using VHDL,” Int. J. Adv. Eng. Amp Technol.,

2011.

[4] R. H. Triharjanto, “THE DEVELOPMENT OF LAPAN’S

MICRO-SATELLITE SUBSISTEMS,” presented at the 34th

Asian Conference on Remote Sensing,, Bali, Indonesia, 2013.

[5] “Rugged PC/104-Plus PowerPC board for embedded

applications (MIP405).” [Online]. Available:

http://www.mpl.ch/t2720.html. [Accessed: 05-Jan-2016].

[6] “Serial PC/104-Plus interface card with RS232, RS422/

RS485 ports (OSCI).” [Online]. Available:

http://www.mpl.ch/t2863.html#thumb. [Accessed: 05-Jan-

2016].

[7] “Compact Flash adapter in PC/104 form factor (IDE2CF).”

[Online]. Available: http://www.mpl.ch/t2834.html.

[Accessed: 05-Jan-2016].

[8] PC/104 Specification. PC/104 Embedded Consortium, 2001.

[9] “400MHz CPU board passes radiation testing for Space

Station.” [Online]. Available:

http://www.mpl.ch/news22.html. [Accessed: 04-Jan-2016].

[10] S. T. Crites, P. G. Lucey, R. Wright, J. Chan, H. Garbeil, K.

A. Horton, A. Imai, M. Wood, and L. Yoneshige, “SUCHI:

The Space Ultra-Compact Hyperspectral Imager for small

satellites,” 2013, p. 873902.

[11] L. King, P. Hohnstadt, J. Katalenich, P. Radecki, and T.

Venturino, “The Oculus: A Nanosatellite for Space

Situational Awareness,” AIAAUSU Conf. Small Satell., Aug.

2009.

[12] T. Sorensen, L. French, W. Doi, J. Chan, E. Gregory, M.

Kobyashi, Z. Lee-Ho, M. Nunes, E. Pilger, A. Yamura, and

L. Yoneshige, “Hawai’iSat-1: Development Of A University

Microsatellite For Testing a Thermal Hyperspectral Imager,”

in AIAA SPACE 2010 Conference & Exposition, American

Institute of Aeronautics and Astronautics.

[13] H. Haryono, “Multitasking Programming of OBDH Satellite

Based On PC-104,” ArXiv151002552 Cs, Oct. 2015.

[14] “Understanding UNIX termios VMIN and VTIME.”

[Online]. Available: http://www.unixwiz.net/techtips/termios-

vmin-vtime.html. [Accessed: 05-Jan-2016].

[15] “How to convert integer to binary string in C#? - Stack

Overflow.” [Online]. Available:

http://stackoverflow.com/questions/3702216/how-to-convert-

integer-to-binary-string-in-c. [Accessed: 05-Jan-2016].

AUTHOR BIOGRAPHY

Haryono is researcher in Indonesian National Institute of

Aeronautics and Space (LAPAN) - Satellite

Technology Center. He is a Doctoral

Degree in Computer Science from Gadjah

Mada University, as a seasoned

professional who has more than 10 years

experience in Software Engineering.

