
Alert correlation and aggregation techniques for
reduction of security alerts and detection of

multistage attack

Faeiz M. Alserhani

College of Computer & Information Sciences, Dep. of Computer Engineering & Networks
Aljouf University

Sakaka Aljouf, Saudi Arabia
fmserhani@ju.edu.sa

Abstract— Malicious attacks by intruders and hackers exploit

flaws and weakness points in deployed systems through several
sophisticated techniques. Consequently, automated detection and
timely response systems such as Network Intrusion Detection
Systems (NIDS) are urgently needed to detect abnormal activities
by monitoring network traffic and system events. The current
implementation of NIDS generates huge volumes of alerts
overwhelming the security analyst which makes event
observation tedious. Hence, an alert correlation and aggregation
technique is proposed to provide a complementary analysis to
link elementary alerts and provide a more global intrusion view.
We have proposed a framework for alert correlation to discover
the logical relationships between atomic alerts potentially
incorporated in multi-stage attacks and to remove data
redundancy. The correlation process is essentially modularized
based on an extension of the properties and characteristics of the
requires/provides model. The aggregation of alerts is based on
graph reduction techniques that remove duplication in vertex set
and migrating connecting edges to a nominated node. The
resulting attack graph consists of nodes representing aggregated
alerts and edges representing the casual relationships. The
experimental results have showed an efficient capability to detect
attack scenarios and to reduce generated security alerts.

Keywords—Intrusion detection systems; Alert correlation;
Alert aggregation; Multi-stage attack

I. INTRODUCTION

Malicious attacks by intruders and hackers exploit flaws
and weaknesses in the deployed systems. This is done by
several sophisticated techniques cannot be prevented by
traditional measures. Hackers are shifting their focus from
looking for fame and advertised attacks to profit-oriented
activities. The current trends in cyber attacks are hidden, slow-
and-low, and coordinated. NIDS are considered to be
important security tools to defend against such threats. The
effectiveness of any NIDS depends on its ability to recognize
different variations of cyber attacks. The current
implementation of intrusion detection systems (commercial
and open-source) is employing signature-based detection in

addition to few simple techniques for statistical analysis. The
main task of signature-based systems is to inspect the network
traffic and perform pattern matching to detect attacks and
generate alerts. A huge number of alerts are generated every
day stressing the administrator; this may oversight an actual
threat. Quality of these alerts is debatable particularly if the
majority is false positives. For this reason, high-level and real-
time analysis techniques are needed. This can be achieved by
discovering the logical connections between the isolated
alerts. It has been practically identified that most of attacker
activities consists of multiple steps (attack scenario) and occur
in a certain time (attack window). Identification of such
strategy can lead to the recognition of attack intensions and
also prediction of unknown attacks. Some simple analysis
tools have been developed to generalize these alerts based on
attack classes [1].

In recent years, alerts clustering and correlation techniques
have been employed to provide a global view of attacker’s

behavior by analyzing low-level alerts produced by the IDS
sensors. The main objective of alerts correlation is to build an
abstract modeling of alerts by generalizing the detected events
instead of the current specific modeling. The constructed
inference will progress even in case of unforeseen attacks.
Different approaches have been utilized to build the
correlation models, and can be categorized into three main
disciplines: probabilistic approaches, scenario-based
approaches and pre/post conditions approaches. The
probabilistic approaches are inspired from anomaly-based
intrusion detection systems where prior knowledge is not
required. In this category, relations between incurred events
are computed statistically providing automatic knowledge
acquisition. Data mining, clustering, association rules
techniques are examples of these approaches. [2] presented a
probabilistic approach to provide unified mathematical
framework that perform a partial matching of features.
Features are extracted and minimum similarities are computed
and weighted. [3] proposed alarm clustering to discover the

 INTERNATIONAL JOURNAL OF ADVANCED STUDIES IN COMPUTER SCIENCE
 AND ENGINEERING
 IJASCSE VOLUME 5 ISSUE 2, 2016

02/29/16

WWW.IJASCSE.ORG 1

http://

root causes of different alarms. The aim was to reduce the
volume of alarms to manageable size. Even though, these
methods are useful for alert fusion and statistical purposes but
they fail to discover the causal connection between alerts.

Recently, [4] and [5] employed different data mining
algorithms for real-time correlation to discover multi-stage
attacks. Off-line attack graph is constructed using manual or
automatic knowledge acquisition and then attack scenarios are
recognized by correlating the collected alerts in real-time. The
incoming step of an attack can be predicted after detection of
few steps of attack in progress. In [4] association rule mining
algorithm is used to generate the attack graph from different
attack classes based on historical data. “Candidate attack
sequences” are determined using a sliding window. In [6]
AprioriAll algorithm which is a sequential pattern matching
technique is used to generate correlation rules based on
temporal and content constraints. [6] adopted a classical
sequential mining method GSP[7] to find the maximal alerts
sequence and then to discover the attack strategy. The
limitation of their work is the use of only attack class and
temporal as features.

On the other hand, scenario-based modeling is based on
manual knowledge acquisition that specifies intrusion steps by
experts. Scenario libraries are used to build the model and to
discover the logical connections between alerts. LAMBDA [8]
is an intrusion specification language to describe the
conditions and effects of an intrusion in connection to the
variable state of the victim system. Similarly, in STATL [9]
language, sequence of events conducted by the attacker can
described to express multi-stage attack. However, these
approaches need a manual description of possible attacker’s
behavior and if a single step is missed the whole behavior go
undetected.

The third category is the pre/post conditions techniques
which are based on the notion that the older alerts prepare for
the later ones. These approaches require specifying the
criterion used to discover the relations between alerts and the
weights of such relations. Early, [10] proposed a require/
provide capabilities model using attack specification language
“JIGSAW”. However, the exact matching between require and
provide conditions is employed causing different variation of
the same behavior is not detected. [11] proposed MIRADOR
correlation approach for alert clustering, merging and then
correlation. Explicit correlation of events based on security
experts is used to express the logical or topologic links
between events. Attack is specified using five fields and based
on the language of LAMBDA [8]. Partial matching techniques
are adopted to build the model. In addition to explicit
correlation, implicit correlation is used to overcome possibly
missing events.

Authors in [12,13] proposed alert correlation model based
on prerequisites and consequences of individual detected
alerts. A knowledge database “Hyper-alert Type Dictionary”

contains rules that describe the conditions where prior
behaviors prepare for later ones. Attack strategy is represented

as a Directed Attack Graph(DAG) with constraints on the
attack attributes considering the temporal order of the
occurring alerts. The nodes of the DAG represent attacks and
the edges represent causal and temporal relations. Similarities
between these strategies are measured to reduce the
redundancy. A technique of hypothesizing and reasoning
about missing attacks by IDS is presented to predict attribute
values of such attacks. The significance of their work is the
reduction of the huge number of security incidents and to
report a high-level view for the administrator. However, the
proposed system is useful as a forensic tool where it perform
offline analysis. In addition, building the knowledge database
containing rules of the applied conditions is a burdensome.
However, authors have not provided a mechanism to build the
Hyper Alert dictionary. Also, the generated graph is huge even
with medium size datasets.

In other respect, [14,15] proposes a combination of
statistical and knowledgebase correlation techniques. Three
algorithms are integrated based on assumption that some
attack stages have statistical and temporal relations even
though direct reasoning link is not existent. Bayesian-based
correlation engine is used to identify the direct relations
among alerts based on prior knowledge. In contrast to
previous approaches, knowledge of attack steps incorporates
as a constraint to probabilistic inference to avoid the exact
matching of pre and post conditions. Causal Discovery
Theory-based engine is developed to discover the statistical of
one-way dependence among alerts. In addition, Granger-
Causality-based algorithm is used by applying statistical and
temporal correlation, to identify mutual dependency.
However, the problem of selection time window for temporal
correlation is still an open problem. Attackers can exploit the
slow-and-low attack to avoid detection. Attack prediction also
relies on prior knowledge where zero-day attack is not
detected.

Although the past techniques dealt with reducing the

massive number of collected data by NIDS, however there are

many limitations. First, the analysis of attack strategy

recognition is too complex especially if the task broadens to

predict the unknown steps. Knowledge-based approaches are

more accurate due to rules matching mechanism which are

built based on experts’ knowledge, but it needs more efforts to

provide precise rules. Statistical and temporal analysis

techniques are unable to detect causal relations among events,

but they don’t require prior defined rules. Adoption of such

systems in real-time is still an open question, where most

proposed systems have been tested in offline fashion or in a

low volume traffic environment. The huge number of detected

events leads to graph explosion as in [12,13]. Moreover,

missing attacks by the IDS can result in separate scenarios

related to the same attack. Attackers also exploit the attack

sliding window used in most approaches by performing slow-

and-low attack.

In this paper we have extended our previous work in

[16][17] to describe the details of the proposed model design.

The underlying principle of the model based on

 INTERNATIONAL JOURNAL OF ADVANCED STUDIES IN COMPUTER SCIENCE
 AND ENGINEERING
 IJASCSE VOLUME 5 ISSUE 2, 2016

 02/29/16

WWW.IJASCSE.ORG 2

provides/requires model is defined precisely giving some

clarification examples. The discussion has been supported by

the evaluation using different metrics. The rest of this paper is

organized as follows: section 2 explains the concepts of the

proposed model. In Section 3, we present a description of the

knowledge-based modeling and its related components.

Section 4 gives the experimental results and then we conclude

in section 5.

II. MULTI-STAGE ATTACK RECOGNITION SYSTEM (MARS)

FRAMEWORK

The MARS framework [16][17] is a logical framework
supported by various components for alert correlation,
aggregation, reduction and multi-stage attack recognition, as
shown in Fig.1. Despite the differences between alert
correlation approaches, they require some common modelling.
A knowledge-base that contains attack characteristics is either
abstracted or using actual attack details. Information
acquisition for a knowledge base is based on the model
employed (e.g. expert systems, artificial intelligence). The
main drawback of the previous approaches is that they do not
provide knowledge representation in a systematic way. For
instance, requires/provides is a general alarm management
model that has been used widely in the alert correlation field,
but most of the proposed paradigms are based on ad hoc
methods of knowledge representation. In our framework,
knowledge elements are designed using a formal knowledge
formalization exploiting available information provided by
IDSs, vulnerability scanners and environment configurations. It
also allows interactive communication between the
administrator and the core system engine. Generated events
reflecting the detected security situation are produced after a
series of processing functions to reduce the data size. The
implementation of the MARS framework will be discussed in
Chapter 5. In this chapter, the underlying principles of the
proposed framework are introduced.

Fig. 1. Multi-stage Attack Recognition System (MARS) framework.

Fig.1 gives a graphical representation of the framework
components that implemented in MARS system. The first task
is performed on all received alerts from the IDS sensor e.g.
Snort. Alert Collection contains normalized alerts presented in
a standardized format that are understood by all correlation
components. Also, a pre-processing function is carried out to
normalize all required alert attributes such as time stamp,

source, and destination addresses. The final results of this
process are stored in Alert Collection which represents the
main data input for the MARS engine. MARS engine consists
of four components: 1) Alert Verification 2) Correlation 3)
Aggregation and 4) Event generation. The task of Alert
Verification component is to take a single alert and determine
the success of the attack that corresponds to this alert. Failed
attack should be assigned as a low level of importance.
However, these failed attacks are not ignored and saved in the
database which can be used as evidence to support other
correlation instances. The Aggregation component is
responsible for combining a series of alerts that refer to attacks
related to the same activity. IDS sensor produces number of
alerts corresponding to the same attack which are conducted at
the same time. Similar alerts are aggregated and a
representative alert is assigned based on a temporal
relationship. These aggregated alerts are saved in the
aggregation collection and are used to generate multi-stage
attack events. The main task of the Correlation component is
identifying the logical connection between received alerts
based on the used correlation algorithm. If any link between
two alerts is recognized, they are correlated and stored in a
temporary collection and then transferred to the correlation
collection after performing the aggregation process. The task of
the Event Generation component is identifying and
constructing multi-stage attack patterns which are composed of
a sequence of individual alerts. A new event is generated if at
least two alerts are correlated and then the generated events are
stored in the Events collection.

Two knowledge bases are used by MARS engine to support
the correlation process: 1) Capabilities Knowledge base and 2)
Vulnerabilities knowledge base. The capabilities database
contains modelled attacks and the relationships between
different attacks based on pre and post conditions of each
modelled attack. Snort signatures are used in the current
implementation and this can be extended to include attack
definitions from other sources. Vulnerabilities database
contains network and host configuration of the protected
system in addition to the detected vulnerability information by
the available scanner.

The initial task executed by the MARS engine is obtaining
alerts from the alert collection and then creating encoded
capabilities corresponding to each alert. Alerts attributes and
the information supplied by the used capabilities knowledge
base are used to build the encoded capabilities collection. Thus,
the encoded data is utilized to produce the initial correlation
information and then it is stored in the Temporary Correlated
Alerts collection. This collection contains atomic logical
connections between alerts which are consequently aggregated
to obtain the aggregated collection. The generated events
(Multi-stage attack instances) are constructed based on the
aggregated alerts in order to minimize the resulting graph.

III. ALERT CORRELATION ALGORITH

The principle objective of the proposed framework is to
identify the causal relationships between a series of attacker
actions that are temporally ordered. The concept of alert
correlation should not be confused with alert aggregation or
alert fusion, as the latter group alerts based on clustering

 INTERNATIONAL JOURNAL OF ADVANCED STUDIES IN COMPUTER SCIENCE
 AND ENGINEERING
 IJASCSE VOLUME 5 ISSUE 2, 2016

 02/29/16

WWW.IJASCSE.ORG 3

regardless of their temporal relations in some approaches. Alert
correlation is the process of identifying a sequence of
distinguished alerts that fall in the same generalized attack
pattern. Fig. 2 shows the relationship between alert correlation
and alert aggregation. Correlation functions are performed
across the x-axis and aggregation functions along the y-axis. In
this regard, we do not need to define explicitly the attack
scenario, and instead the logical rules are generated using the
pre- and post-conditions of each activity. Attributes provided
by elementary alerts are used to define instances of alerts.
Instances of system conditions are instantiated with time
constraints, and correlation rules are created.

Fig. 2. Relationships between alert correlation and aggregation.

Definition 1 Given a pair of attack instances a : a1, a2 ordered
temporally in the following time slots respectively:

a1: ts1 and te1
a2: ts2 and te2

where ts is the start time, and te is the end time.
a1 is correlated with for a2 if:

1- There exists at least one common capability C in
R(a2), and P(a1).

2- Satisfaction of V(a2) constraints.
3- P(a1).te1 ≤ R(a2).ts2

The proposed correlation approach consists of a series of
complementary phases discussed in the following sections. A
complete description of the related algorithms is given to show
the system's functioning.

A. Initialization of instances of pre- and post-conditions

The objective of this procedure is to create instances of
pre- and post-conditions for each alert received. Encoded
conditions are in the form of corresponding capabilities based
on the arguments obtained from the in-memory knowledge
dictionary. Pre-condition details of previous processed alerts
are deleted because they are no longer used. In other words,
the remaining possible causal links of any alert are ignored as
the time constraints are not satisfied.
Consider alert a1 detected between the times t1 and t2, and
another alert a2 observed between t3 and t4, where t1 ≤ t2 ≤ t3 ≤
t4. Even though a2 has some post-conditions that match a1 pre-
conditions, they will not be correlated as a1 is detected before
a2.

A matching between the signatures IDs in the knowledge
library and those of the sequence of the received raw alert is
performed. Therefore, lists of pre- and post-condition

identifiers are obtained. The argument of each condition is
identified and the encoded capabilities information is stored in
corresponding collections in the database.

B. Knowledge initialization

A complete knowledge is initialized in memory when the
MARS server starts. The total memory space of a knowledge
base of 15,000 signatures does not exceed a few kilobytes.
The initialization process incorporates parsing of the
knowledge text file (instead of a text file, an XML
representation can be used for faster processing). A dictionary
data structure is created to store knowledge details.

C. Correlation algorithm

The encoded capabilities stored in a collection of pre- and
post-conditions are used to create the initial correlation graph,
called a temporary correlated collection. In this collection, all
correlated elementary alerts are stored for further processing,
reflecting atomic correlations. The size of the information in
temporary collections may be huge, and hence graph reduction
and alert aggregation functionality are performed to obtain the
final graph. The correlation process is based on the satisfaction
of:

- Causal relationship based on pre- and post-conditions of
each detected alert.

- Temporal and spatial constrains such as IP address, port
and detected time.

- Service configuration and vulnerability details.

Each correlated alert must belong to what we have called in
this research generated events. Complete details of events are
stored in a separate collection designated InfallEventsC.
Initially, an in-memory hash table called a correlated map is
created, and then the details are transferred to a temporary
correlated collection. The detected event takes the earliest start
time and the latest end time among the start and end times of
all corresponding alerts. An event is detected if at least two
correlated alerts are detected. However, every new event is
evaluated if it can be combined with other detected events on
the basis of common characteristics. If there is a casual link
between previous aggregated alerts and one of the detected
alerts associated with the new event, the two events can be
combined. In case of a connection between two events, the
original event will become a master event and the new one will
be considered a slave event during the process until they
become a single accumulated event. The resulting event title is
a concatenation of the intrusion category names of each group
of events, as shown in Fig. 3, where Attack A, B, and C are
general descriptions of the attack.

Once all received alerts are processed and each alert is
assigned to a specific intrusion event, the original alert
collection is updated in order to perform alert aggregation.

Fig. 3. Construction of an event title.

 INTERNATIONAL JOURNAL OF ADVANCED STUDIES IN COMPUTER SCIENCE
 AND ENGINEERING
 IJASCSE VOLUME 5 ISSUE 2, 2016

02/29/16

WWW.IJASCSE.ORG 4

IV. ALERT AGGREGATION

A common problem among alert correlation systems is the
huge amount of atomic alerts generated by an IDS and
possibly by several IDSs. An IDS may trigger a large quantity
of the same alerts at close time intervals that are related to the
same security violation. Alert aggregation is proposed to
remove duplicated alerts, e.g. the same alerts corresponding to
the same signature description or attack class. A pre-defined
window is used to determine whether two alerts are close
enough to be aggregated into a single alert. In addition, our
aggregation approach is based on graph reduction techniques
that remove duplication in vertex set and migrating connecting
edges to the nominated node. The resulting graph will only
contain alerts that are in fact representing different security
events.
Definition 2: Given a cyclic directed graph G(V,E) where V is
the vertex set and E is the edges set, the in-degree of a vertex
is the number of edges entering it. A vertex with zero in-
degree values indicates a vertex with no edges entering it (e.g.
root nodes).
In the attack graph, the node’s in-degree is the number of how
many times the alert appears in caused alert group. The
aggregation algorithm begins with defining the in-degree
value of each node which is not aggregated in the graph. A list
of zero in-degree values are identified to represent the first
layer of the graph nodes; in other words, the alerts that are not
caused by others. The zero in-degree list will contain groups
of similar alerts occur at different times. Each group is treated
as follows:

1) Nominate a master alert, which is the first alert in the
temporally sorted list.

2) The aggregation process for the other alerts in the same
group is based on:

- Similarity of signature IDs; this can be generalized to
consider attack classes for a coarse granularity.
- Equality of source and destination IP addresses of the
parties involved.
- The time difference between the detection of the two
alerts does not exceed a defined value, e.g. 1 second.

3) If the above conditions are satisfied, the processed alert
is added to the aggregated alerts corresponding to its master
alert.

4) Change all the relationships between the aggregated
alert and other alerts in the whole graph by replacing it with
its master alert. Hence, the master alert will represent the
aggregated alerts without losing the causal connections in
the primary correlated collection.

5) Since all aggregated alerts are represented by a single
alert, the corresponding time should cover the actual
detection time for any further correlation. Thus, the start
time of the master alert is the earliest time among the
aggregated start times, and the end time is the latest one.

6) Remove the aggregated alert from the graph; however,
the original information is not ignored as the graph can be
disaggregated when required. Each master alert has its own
counter of related aggregated alerts and graph layer.

After aggregating each group, the first graph layer, zero in-
degree of all aggregated groups, is decremented by 1 to obtain
the next layer. This is an opposite method to creating zero in-

degree values. The second level will also have zero in-degree
nodes and the same procedure is executed in an iterated
fashion until all the graph nodes are treated.

V. GRAPH REDUCTION

In order to reduce the complexity of the resulting graph, data
redundancy should be eliminated. The graph consists of nodes
representing aggregated alerts and edges representing the
casual relationships. The number of nodes is not affected
while the number of edges is minimised without affecting
reachability. Hence, the target is to find a minimal DAG with
the least number of arcs and which is equivalent to the original
DAG. Consider the case shown in Fig. 4, with four alerts: a, b,
c, and d. If Alert a is causing Alert b and b is causing c, there
is no need for the transitive edge between a and c, and
similarly the edges between a-d and b-d. The removal of the
transitive optional edges does not have any effect on
connectivity between the original nodes.

Fig. 4. Transitive edges in graph.

This is based on the assumption that the relationships
between nodes can propagate and the removed edges are
considered optional.

Definition 3: given a DAG G=(V,E), V=X is the vertex set,
E=R is the set of arcs of the graph, let n=#V, V={1,….,n}, the
reduced graph G′(V,E′) is a DAG with the following
properties:

1) The vertex set (#V) of G(V,E) is equal to the vertex
set (#V) of G′(V,E′).

2) The directed paths between the vertex in G(V,E) and
G′(V,E′) are similar.

3) G′(V,E′) has the smallest number of edges E′=R′
between vertex sets without affecting the connectivity,
R′<=R.

Two algorithms have been developed: online graph
reduction for edge deletion on the left side of the graph, and
offline graph reduction for edge deletion on the right side of
the graph. The online algorithm removes the transitive edges
at the real-time when every node joins the graph. This
procedure is performed at the first stage of correlation and
before alert aggregation in order to minimise the system's
processing time. The offline algorithm results in a further
graph reduction if any redundant connection exists after the
graph is built, starting from the leaf nodes to the root nodes.

 To clarify the idea, consider the alerts correlated by the
system in the initial stage shown in Fig.5. There are five nodes
and eight edges connecting these nodes to represent the causal
relationship. In Fig. 5 (a), the number of the representing
nodes n is half the number connecting arcs #V. The edges
1→5 and 2→5 can be deleted because they are redundant and
the description of the intrusion sequence will not be affected.

 INTERNATIONAL JOURNAL OF ADVANCED STUDIES IN COMPUTER SCIENCE
 AND ENGINEERING
 IJASCSE VOLUME 5 ISSUE 2, 2016

02/29/16

WWW.IJASCSE.ORG 5

In the proposed reduction algorithm, each node has two lists of
children and parents, and the aim is to remove the duplicates
in these.

Fig. 5. Example of graph reduction.

VI. EVALUATION

DARPA 2000 datasets, including LLDDOS 1.0 and

LLDDOS 2.0 [18], are often used to evaluate IDSs and alert

correlation systems. They consist of two multi-stage attack

scenarios to launch Distributed Denial of Service attacks

(DDoS). The evaluation goal is to test the effectiveness of our

approach to recognize attack scenarios, to correctly correlate

the alerts, and to minimize the alerts volume. We have used

these datasets for their available ground truth to assess our

correlation approach and to compare our results with those of

other researchers. These datasets do not contain the actual

alerts from the IDS sensors, and hence we have generated

them using a Snort sensor. The detected events evolve over

time instead of by batch analysis.

Our proposed system has achieved high levels of accuracy
among the datasets in LLDDOS1.0, and acceptable levels in
LLDDOS2.0 as shown in Table. 1. The only low accuracy rate
recorded is from the analysis of the DMZ2.0 dataset, and of
which we are aware because the actual attack was performed
inside the network. In addition, the volume of alert
information has been significantly reduced, achieving more
than a 90% reduction rate in most test cases.

VII. CONCLUSION

We have proposed a correlation framework to achieve high
quality multistage attack recognition and to provide the
security operator with a global view of the security
perspective. The pre- and post- condition approach is used to
identify the logical relations among low level alerts. The alerts
are aggregated, verified using vulnerability modelling, and
correlated to construct multi-stage attacks. The results show
that our approach can effectively detect multi-stage attacks.
The resulting attack graph is reduced due to implementation of
the graph reduction algorithms.

The proposed approach can build an overall view of the
system's security status even with incomplete alert
information. The outcome of the proposed framework is the
minimisation of the effects of missing audit data, the reduction
of the large volume of redundant alert which are mostly false
positives, and the extraction of an attack behaviour summary
in the form of a multi-stage attack scenario

TABLE I. SYSTEM EVALUATION

 LLDOS1.0 LLDOS2.0

 DMZ Inside DMZ Inside

elementary alerts 3684 720 1214 199

related alerts 1262 369 12 25

C
or

re
la

tio
n

ra
te

relevant correlations 1849 2915 61 91

detected correlations 1788 2959 69 96

Recall rate (%) 88.4% 93.7% 60.9% 73.6%

Precision rate (%) 91.5% 92.3% 68.9% 82.7%

Correlations with
aggregation

177 156 22 65

detected events 25 17 3 6

aggregated alerts 135 114 17 37

Reduction rate 96.3% 84.2% 98.6% 81.4%

REFERENCES

[1] “Basic Analysis and Security Engine”; http://base.secureideas.net/

[2] A. Valdes and K. Skinner. Probabilistic alert correlation. Lecture Notes
in Computer Science, 2212:54-68, 2001

[3] K. Julisch. Clustering intrusion detection alarms to support root cause
analysis. ACM Trans. Inf. Syst.Secur., 6(4):443-471, 2003.

[4] Zhi-tang Li, Jie Lei, Li Wang, Dong Li, "A Data Mining Approach to
Generating Network Attack Graph for Intrusion Prediction," Fuzzy
Systems and Knowledge Discovery, Fourth International Conference on,
vol. 4, pp. 307-311, Fourth International Conference on Fuzzy Systems
and Knowledge Discovery (FSKD 2007) Vol.4, 2007.

[5] Jie Ma, Zhi-tang Li, Wei-ming Li, "Real-Time Alert Stream Clustering
and Correlation for Discovering Attack Strategies," Fuzzy Systems and
Knowledge Discovery, Fourth International Conference on, vol. 4, pp.
379-384, 2008 Fifth International Conference on Fuzzy Systems and
Knowledge Discovery, 2008.

[6] Li, Z., A. Zhang, et al. Real-Time Correlation of Network Security
Alerts. Proceedings of the IEEE International Conference on e-Business
Engineering, IEEE Computer Society, 2007

[7] R. Agrawal and R. Srikant: Mining sequential patterns. In: Research
Report RJ 9910, IBM Almaden Research Center, San Jose, California,
October 1994.

[8] F. Cuppens and R. Ortalo. Lambda: A language to model a database for
detection of attacks. In RAID '00: Proceedings of the Third International
Workshop on Recent Advances in Intrusion Detection, pages197-216,
London, UK, 2000. Springer-Verlag.

[9] S. Eckmann, G. Vigna, and R. Kemmerer. Statl: An attack language for
state-based intrusion detection, 2002.

[10] S. J. Templeton and K. Levitt. A requires/provides model for computer
attacks. In NSPW '00: Proceedings of the 2000 workshop on New
security paradigms, pages 31-38, New York, NY, USA, 2000. ACM
Press.

[11] F. Cuppens. Managing alerts in a multi-intrusion detection environment.
In 17th Annual Computer Security Applications Conference New-
Orleans, New-Orleans, USA, December 2001.

[12] Peng Ning, Yun Cui, Douglas Reeves, and Dingbang Xu, "Tools and
Techniques for Analyzing Intrusion Alerts," in ACM Transactions on
nformation and System Security, Vol. 7, No. 2, pages 273--318, May
2004.

 INTERNATIONAL JOURNAL OF ADVANCED STUDIES IN COMPUTER SCIENCE
 AND ENGINEERING
 IJASCSE VOLUME 5 ISSUE 2, 2016

02/29/16

WWW.IJASCSE.ORG 6

[13] Peng Ning, Yun Cui, Douglas S. Reeves, "Constructing Attack
Scenarios through Correlation of Intrusion Alerts," in Proceedings of the
9th ACM Conference on Computer & Communications Security, pages
245--254, Washington D.C., November 2002.

[14] X. Qin. A Probabilistic-Based Framework for INFOSEC Alert
Correlation. PhD thesis, Georgia Institute of Technology, 2005.

[15] X. Qin and W. Lee. Attack plan recognition and prediction using causal
networks. In ACSAC '04: Proceedings of the 20th Annual Computer
Security Applications Conference (ACSAC'04), pages 370-379,
Washington, DC, USA, 2004. IEEE Computer Society.

[16] Faeiz Alserhani and Monis Akhlaq et al, “MARS: Multi Stage Attack
Recognition System, In Proc. of the International Conf. on Advanced
Information Networking and Applications (AINA), Perth, 2010, pp. 753-
759.

[17] Faeiz Alserhnai and Monis Akhlaq et al, Event-based Correlation
Systems To Detect SQLI Activities, In Proc. Of the International
Conference on Advanced Information Networking and Applications
(AINA), Bioplois, Singapore, 2011.

[18] “MIT Lincoln Laboratory ”; http://www.ll.mit.edu/.

 INTERNATIONAL JOURNAL OF ADVANCED STUDIES IN COMPUTER SCIENCE
 AND ENGINEERING
 IJASCSE VOLUME 5 ISSUE 2, 2016

02/29/16

WWW.IJASCSE.ORG 7

http://www.ll.mit.edu/

