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Abstract— Malicious attacks by intruders and hackers exploit 

flaws and weakness points in deployed systems through several 
sophisticated techniques. Consequently, automated detection and 
timely response systems such as Network Intrusion Detection 
Systems (NIDS) are urgently needed to detect abnormal activities 
by monitoring network traffic and system events. The current 
implementation of NIDS generates huge volumes of alerts 
overwhelming the security analyst which makes event 
observation tedious. Hence, an alert correlation and aggregation 
technique is proposed to provide a complementary analysis to 
link elementary alerts and provide a more global intrusion view. 
We have proposed a framework for alert correlation to discover 
the logical relationships between atomic alerts potentially 
incorporated in multi-stage attacks and to remove data 
redundancy. The correlation process is essentially modularized 
based on an extension of the properties and characteristics of the 
requires/provides model. The aggregation of alerts is based on 
graph reduction techniques that remove duplication in vertex set 
and migrating connecting edges to a nominated node. The 
resulting attack graph consists of nodes representing aggregated 
alerts and edges representing the casual relationships. The 
experimental results have showed an efficient capability to detect 
attack scenarios and to reduce generated security alerts. 

Keywords—Intrusion detection systems; Alert correlation; 
Alert aggregation; Multi-stage attack 

I.  INTRODUCTION  

Malicious attacks by intruders and hackers exploit flaws 
and weaknesses in the deployed systems. This is done by 
several sophisticated techniques cannot be prevented by 
traditional measures. Hackers are shifting their focus from 
looking for fame and advertised attacks to profit-oriented 
activities. The current trends in cyber attacks are hidden, slow-
and-low, and coordinated. NIDS are considered to be 
important security tools to defend against such threats. The 
effectiveness of any NIDS depends on its ability to recognize 
different variations of cyber attacks. The current 
implementation of intrusion detection systems (commercial 
and open-source) is employing signature-based detection in 

addition to few simple techniques for statistical analysis. The 
main task of signature-based systems is to inspect the network 
traffic and perform pattern matching to detect attacks and 
generate alerts. A huge number of alerts are generated every 
day stressing the administrator; this may oversight an actual 
threat. Quality of these alerts is debatable particularly if the 
majority is false positives. For this reason, high-level and real-
time analysis techniques are needed. This can be achieved by 
discovering the logical connections between the isolated 
alerts. It has been practically identified that most of attacker 
activities consists of multiple steps (attack scenario) and occur 
in a certain time (attack window). Identification of such 
strategy can lead to the recognition of attack intensions and 
also prediction of unknown attacks. Some simple analysis 
tools have been developed to generalize these alerts based on 
attack classes [1].  

In recent years, alerts clustering and correlation techniques 
have been employed to provide a global view of attacker’s 

behavior by analyzing low-level alerts produced by the IDS 
sensors. The main objective of alerts correlation is to build an 
abstract modeling of alerts by generalizing the detected events 
instead of the current specific modeling. The constructed 
inference will progress even in case of unforeseen attacks. 
Different approaches have been utilized to build the 
correlation models, and can be categorized into three main 
disciplines: probabilistic approaches, scenario-based 
approaches and pre/post conditions approaches. The 
probabilistic approaches are inspired from anomaly-based 
intrusion detection systems where prior knowledge is not 
required. In this category, relations between incurred events 
are computed statistically providing automatic knowledge 
acquisition. Data mining, clustering, association rules 
techniques are examples of these approaches. [2] presented a 
probabilistic approach to provide unified mathematical 
framework that perform a partial matching of features. 
Features are extracted and minimum similarities are computed 
and weighted. [3] proposed alarm clustering to discover the 
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root causes of different alarms. The aim was to reduce the 
volume of alarms to manageable size. Even though, these 
methods are useful for alert fusion and statistical purposes but 
they fail to discover the causal connection between alerts. 

Recently, [4] and [5] employed different data mining 
algorithms for real-time correlation to discover multi-stage 
attacks. Off-line attack graph is constructed using manual or 
automatic knowledge acquisition and then attack scenarios are 
recognized by correlating the collected alerts in real-time. The 
incoming step of an attack can be predicted after detection of 
few steps of attack in progress. In [4] association rule mining 
algorithm is used to generate the attack graph from different 
attack classes based on historical data. “Candidate attack 
sequences” are determined using a sliding window. In [6] 
AprioriAll algorithm which is a sequential pattern matching 
technique is used to generate correlation rules based on 
temporal and content constraints.  [6] adopted a classical 
sequential mining method GSP[7] to find the maximal alerts 
sequence and then to discover the attack strategy. The 
limitation of their work is the use of only attack class and 
temporal as features. 

On the other hand, scenario-based modeling is based on 
manual knowledge acquisition that specifies intrusion steps by 
experts. Scenario libraries are used to build the model and to 
discover the logical connections between alerts. LAMBDA [8] 
is an intrusion specification language to describe the 
conditions and effects of an intrusion in connection to the 
variable state of the victim system. Similarly, in STATL [9] 
language, sequence of events conducted by the attacker can 
described to express multi-stage attack. However, these 
approaches need a manual description of possible attacker’s 
behavior and if a single step is missed the whole behavior go 
undetected.   

The third category is the pre/post conditions techniques 
which are based on the notion that the older alerts prepare for 
the later ones. These approaches require specifying the 
criterion used to discover the relations between alerts and the 
weights of such relations. Early, [10] proposed a require/ 
provide capabilities model using attack specification language 
“JIGSAW”. However, the exact matching between require and 
provide conditions is employed causing different variation of 
the same behavior is not detected. [11] proposed MIRADOR 
correlation approach for alert clustering, merging and then 
correlation. Explicit correlation of events based on security 
experts is used to express the logical or topologic links 
between events. Attack is specified using five fields and based 
on the language of LAMBDA [8]. Partial matching techniques 
are adopted to build the model. In addition to explicit 
correlation, implicit correlation is used to overcome possibly 
missing events. 

Authors in [12,13] proposed alert correlation model based 
on prerequisites and consequences of individual detected 
alerts. A knowledge database “Hyper-alert Type Dictionary” 

contains rules that describe the conditions where prior 
behaviors prepare for later ones. Attack strategy is represented 

as a Directed Attack Graph(DAG) with constraints on the 
attack attributes considering the temporal order of the 
occurring alerts. The nodes of the DAG represent attacks and 
the edges represent causal and temporal relations. Similarities 
between these strategies are measured to reduce the 
redundancy. A technique of hypothesizing and reasoning 
about missing attacks by IDS is presented to predict attribute 
values of such attacks. The significance of their work is the 
reduction of the huge number of security incidents and to 
report a high-level view for the administrator. However, the 
proposed system is useful as a forensic tool where it perform 
offline analysis. In addition, building the knowledge database 
containing rules of the applied conditions is a burdensome. 
However, authors have not provided a mechanism to build the 
Hyper Alert dictionary. Also, the generated graph is huge even 
with medium size datasets. 

In other respect, [14,15] proposes a combination of 
statistical and knowledgebase correlation techniques. Three 
algorithms are integrated based on assumption that some 
attack stages have statistical and temporal relations even 
though direct reasoning link is not existent. Bayesian-based 
correlation engine is used to identify the direct relations 
among alerts based on prior knowledge. In contrast to 
previous approaches, knowledge of attack steps incorporates 
as a constraint to probabilistic inference to avoid the exact 
matching of pre and post conditions. Causal Discovery 
Theory-based engine is developed to discover the statistical of 
one-way dependence among alerts. In addition, Granger-
Causality-based algorithm is used by applying statistical and 
temporal correlation, to identify mutual dependency. 
However, the problem of selection time window for temporal 
correlation is still an open problem. Attackers can exploit the 
slow-and-low attack to avoid detection. Attack prediction also 
relies on prior knowledge where zero-day attack is not 
detected. 

Although the past techniques dealt with reducing the 

massive number of collected data by NIDS, however there are 

many limitations. First, the analysis of attack strategy 

recognition is too complex especially if the task broadens to 

predict the unknown steps. Knowledge-based approaches are 

more accurate due to rules matching mechanism which are 

built based on experts’ knowledge, but it needs more efforts to 

provide precise rules. Statistical and temporal analysis 

techniques are unable to detect causal relations among events, 

but they don’t require prior defined rules. Adoption of such 

systems in real-time is still an open question, where most 

proposed systems have been tested in offline fashion or in a 

low volume traffic environment. The huge number of detected 

events leads to graph explosion as in [12,13]. Moreover, 

missing attacks by the IDS can result in separate scenarios 

related to the same attack.  Attackers also exploit the attack 

sliding window used in most approaches by performing slow-

and-low attack. 

In this paper we have extended our previous work in 

[16][17] to describe the details of the proposed model design. 

The underlying principle of the model based on 
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provides/requires model is defined precisely giving some 

clarification examples. The discussion has been supported by 

the evaluation using different metrics. The rest of this paper is 

organized as follows: section 2 explains the concepts of the 

proposed model. In Section 3, we present a description of the 

knowledge-based modeling and its related components. 

Section 4 gives the experimental results and then we conclude 

in section 5.  

II. MULTI-STAGE ATTACK RECOGNITION SYSTEM (MARS) 

FRAMEWORK 

The MARS framework [16][17] is a logical framework 
supported by various components for alert correlation, 
aggregation, reduction and multi-stage attack recognition, as 
shown in Fig.1. Despite the differences between alert 
correlation approaches, they require some common modelling. 
A knowledge-base that contains attack characteristics is either 
abstracted or using actual attack details. Information 
acquisition for a knowledge base is based on the model 
employed (e.g. expert systems, artificial intelligence). The 
main drawback of the previous approaches is that they do not 
provide knowledge representation in a systematic way. For 
instance, requires/provides is a general alarm management 
model that has been used widely in the alert correlation field, 
but most of the proposed paradigms are based on ad hoc 
methods of knowledge representation. In our framework, 
knowledge elements are designed using a formal knowledge 
formalization exploiting available information provided by 
IDSs, vulnerability scanners and environment configurations. It 
also allows interactive communication between the 
administrator and the core system engine. Generated events 
reflecting the detected security situation are produced after a 
series of processing functions to reduce the data size. The 
implementation of the MARS framework will be discussed in 
Chapter 5. In this chapter, the underlying principles of the 
proposed framework are introduced. 

 
Fig. 1. Multi-stage Attack Recognition System (MARS) framework. 

Fig.1 gives a graphical representation of the framework 
components that implemented in MARS system. The first task 
is performed on all received alerts from the IDS sensor e.g. 
Snort. Alert Collection contains normalized alerts presented in 
a standardized format that are understood by all correlation 
components. Also, a pre-processing function is carried out to 
normalize all required alert attributes such as time stamp, 

source, and destination addresses. The final results of this 
process are stored in Alert Collection which represents the 
main data input for the MARS engine. MARS engine consists 
of four components: 1) Alert Verification 2) Correlation 3) 
Aggregation and 4) Event generation. The task of Alert 
Verification component is to take a single alert and determine 
the success of the attack that corresponds to this alert. Failed 
attack should be assigned as a low level of importance. 
However, these failed attacks are not ignored and saved in the 
database which can be used as evidence to support other 
correlation instances. The Aggregation component is 
responsible for combining a series of alerts that refer to attacks 
related to the same activity. IDS sensor produces number of 
alerts corresponding to the same attack which are conducted at 
the same time. Similar alerts are aggregated and a 
representative alert is assigned based on a temporal 
relationship. These aggregated alerts are saved in the 
aggregation collection and are used to generate multi-stage 
attack events. The main task of the Correlation component is 
identifying the logical connection between received alerts 
based on the used correlation algorithm. If any link between 
two alerts is recognized, they are correlated and stored in a 
temporary collection and then transferred to the correlation 
collection after performing the aggregation process. The task of 
the Event Generation component is identifying and 
constructing multi-stage attack patterns which are composed of 
a sequence of individual alerts. A new event is generated if at 
least two alerts are correlated and then the generated events are 
stored in the Events collection.  

Two knowledge bases are used by MARS engine to support 
the correlation process: 1) Capabilities Knowledge base and 2) 
Vulnerabilities knowledge base. The capabilities database 
contains modelled attacks and the relationships between 
different attacks based on pre and post conditions of each 
modelled attack. Snort signatures are used in the current 
implementation and this can be extended to include attack 
definitions from other sources. Vulnerabilities database 
contains network and host configuration of the protected 
system in addition to the detected vulnerability information by 
the available scanner.  

The initial task executed by the MARS engine is obtaining 
alerts from the alert collection and then creating encoded 
capabilities corresponding to each alert. Alerts attributes and 
the information supplied by the used capabilities knowledge 
base are used to build the encoded capabilities collection. Thus, 
the encoded data is utilized to produce the initial correlation 
information and then it is stored in the Temporary Correlated 
Alerts collection. This collection contains atomic logical 
connections between alerts which are consequently aggregated 
to obtain the aggregated collection. The generated events 
(Multi-stage attack instances) are constructed based on the 
aggregated alerts in order to minimize the resulting graph. 

III. ALERT CORRELATION ALGORITH 

The principle objective of the proposed framework is to 
identify the causal relationships between a series of attacker 
actions that are temporally ordered. The concept of alert 
correlation should not be confused with alert aggregation or 
alert fusion, as the latter group alerts based on clustering 
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regardless of their temporal relations in some approaches. Alert 
correlation is the process of identifying a sequence of 
distinguished alerts that fall in the same generalized attack 
pattern. Fig. 2 shows the relationship between alert correlation 
and alert aggregation. Correlation functions are performed 
across the x-axis and aggregation functions along the y-axis. In 
this regard, we do not need to define explicitly the attack 
scenario, and instead the logical rules are generated using the 
pre- and post-conditions of each activity. Attributes provided 
by elementary alerts are used to define instances of alerts. 
Instances of system conditions are instantiated with time 
constraints, and correlation rules are created. 

  

 
Fig. 2.  Relationships between alert correlation and aggregation. 

Definition 1 Given a pair of attack instances a : a1, a2 ordered 
temporally in the following time slots respectively: 

a1: ts1 and te1  
a2: ts2 and te2  

where ts is the start time, and te is the end time. 
a1 is correlated with for a2 if: 

1- There exists at least one common capability C in 
R(a2), and P(a1). 

2- Satisfaction of V(a2) constraints. 
3- P(a1).te1 ≤ R(a2).ts2  

The proposed correlation approach consists of a series of 
complementary phases discussed in the following sections. A 
complete description of the related algorithms is given to show 
the system's functioning.  

A. Initialization of instances of pre- and post-conditions 

The objective of this procedure is to create instances of 
pre- and post-conditions for each alert received. Encoded 
conditions are in the form of corresponding capabilities based 
on the arguments obtained from the in-memory knowledge 
dictionary. Pre-condition details of previous processed alerts 
are deleted because they are no longer used. In other words, 
the remaining possible causal links of any alert are ignored as 
the time constraints are not satisfied.  
Consider alert a1 detected between the times t1 and t2, and 
another alert a2 observed between t3 and t4, where t1 ≤ t2 ≤ t3 ≤ 
t4. Even though a2 has some post-conditions that match a1 pre-
conditions, they will not be correlated as a1 is detected before 
a2.  

A matching between the signatures IDs in the knowledge 
library and those of the sequence of the received raw alert is 
performed. Therefore, lists of pre- and post-condition 

identifiers are obtained. The argument of each condition is 
identified and the encoded capabilities information is stored in 
corresponding collections in the database. 

B.  Knowledge initialization 

A complete knowledge is initialized in memory when the 
MARS server starts. The total memory space of a knowledge 
base of 15,000 signatures does not exceed a few kilobytes. 
The initialization process incorporates parsing of the 
knowledge text file (instead of a text file, an XML 
representation can be used for faster processing). A dictionary 
data structure is created to store knowledge details. 

C. Correlation algorithm 

The encoded capabilities stored in a collection of pre- and 
post-conditions are used to create the initial correlation graph, 
called a temporary correlated collection. In this collection, all 
correlated elementary alerts are stored for further processing, 
reflecting atomic correlations. The size of the information in 
temporary collections may be huge, and hence graph reduction 
and alert aggregation functionality are performed to obtain the 
final graph. The correlation process is based on the satisfaction 
of: 

- Causal relationship based on pre- and post-conditions of 
each detected alert. 

- Temporal and spatial constrains such as IP address, port 
and detected time. 

- Service configuration and vulnerability details. 

Each correlated alert must belong to what we have called in 
this research generated events. Complete details of events are 
stored in a separate collection designated InfallEventsC. 
Initially, an in-memory hash table called a correlated map is 
created, and then the details are transferred to a temporary 
correlated collection. The detected event takes the earliest start 
time and the latest end time among the start and end times of 
all corresponding alerts. An event is detected if at least two 
correlated alerts are detected. However, every new event is 
evaluated if it can be combined with other detected events on 
the basis of common characteristics. If there is a casual link 
between previous aggregated alerts and one of the detected 
alerts associated with the new event, the two events can be 
combined. In case of a connection between two events, the 
original event will become a master event and the new one will 
be considered a slave event during the process until they 
become a single accumulated event. The resulting event title is 
a concatenation of the intrusion category names of each group 
of events, as shown in Fig. 3, where Attack A, B, and C are 
general descriptions of the attack. 

Once all received alerts are processed and each alert is 
assigned to a specific intrusion event, the original alert 
collection is updated in order to perform alert aggregation.  

 
Fig. 3.  Construction of an event title. 
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IV. ALERT AGGREGATION 

A common problem among alert correlation systems is the 
huge amount of atomic alerts generated by an IDS and 
possibly by several IDSs. An IDS may trigger a large quantity 
of the same alerts at close time intervals that are related to the 
same security violation. Alert aggregation is proposed to 
remove duplicated alerts, e.g. the same alerts corresponding to 
the same signature description or attack class. A pre-defined 
window is used to determine whether two alerts are close 
enough to be aggregated into a single alert. In addition, our 
aggregation approach is based on graph reduction techniques 
that remove duplication in vertex set and migrating connecting 
edges to the nominated node. The resulting graph will only 
contain alerts that are in fact representing different security 
events. 
Definition 2: Given a cyclic directed graph G(V,E) where V is 
the vertex set and E is the edges set, the in-degree of a vertex 
is the number of edges entering it. A vertex with zero in-
degree values indicates a vertex with no edges entering it (e.g. 
root nodes).  
In the attack graph, the node’s in-degree is the number of how 
many times the alert appears in caused alert group. The 
aggregation algorithm begins with defining the in-degree 
value of each node which is not aggregated in the graph. A list 
of zero in-degree values are identified to represent the first 
layer of the graph nodes; in other words, the alerts that are not 
caused by others. The zero in-degree list will contain groups 
of similar alerts occur at different times. Each group is treated 
as follows: 

1) Nominate a master alert, which is the first alert in the 
temporally sorted list.  

2) The aggregation process for the other alerts in the same 
group is based on: 

- Similarity of signature IDs; this can be generalized to 
consider attack classes for a coarse granularity.  
- Equality of source and destination IP addresses of the 
parties involved. 
- The time difference between the detection of the two 
alerts does not exceed a defined value, e.g. 1 second. 

3) If the above conditions are satisfied, the processed alert 
is added to the aggregated alerts corresponding to its master 
alert. 

4) Change all the relationships between the aggregated 
alert and other alerts in the whole graph by replacing it with 
its master alert. Hence, the master alert will represent the 
aggregated alerts without losing the causal connections in 
the primary correlated collection. 

5) Since all aggregated alerts are represented by a single 
alert, the corresponding time should cover the actual 
detection time for any further correlation. Thus, the start 
time of the master alert is the earliest time among the 
aggregated start times, and the end time is the latest one.  

6) Remove the aggregated alert from the graph; however, 
the original information is not ignored as the graph can be 
disaggregated when required. Each master alert has its own 
counter of related aggregated alerts and graph layer. 

After aggregating each group, the first graph layer, zero in-
degree of all aggregated groups, is decremented by 1 to obtain 
the next layer. This is an opposite method to creating zero in-

degree values. The second level will also have zero in-degree 
nodes and the same procedure is executed in an iterated 
fashion until all the graph nodes are treated. 

V. GRAPH REDUCTION 

In order to reduce the complexity of the resulting graph, data 
redundancy should be eliminated. The graph consists of nodes 
representing aggregated alerts and edges representing the 
casual relationships. The number of nodes is not affected 
while the number of edges is minimised without affecting 
reachability. Hence, the target is to find a minimal DAG with 
the least number of arcs and which is equivalent to the original 
DAG. Consider the case shown in Fig. 4, with four alerts: a, b, 
c, and d. If Alert a is causing Alert b and b is causing c, there 
is no need for the transitive edge between a and c, and 
similarly the edges between a-d and b-d. The removal of the 
transitive optional edges does not have any effect on 
connectivity between the original nodes. 

 
Fig. 4.  Transitive edges in graph. 

This is based on the assumption that the relationships 
between nodes can propagate and the removed edges are 
considered optional.  

Definition 3: given a DAG G=(V,E), V=X is the vertex set, 
E=R is the set of arcs of the graph, let n=#V, V={1,….,n}, the 
reduced graph G′(V,E′) is a DAG with the following 
properties: 

1) The vertex set (#V) of G(V,E) is equal to the vertex 
set (#V) of G′(V,E′). 

2) The directed paths between the vertex in G(V,E) and 
G′(V,E′) are similar. 

3) G′(V,E′) has the smallest number of edges E′=R′ 
between vertex sets without affecting the connectivity, 
R′<=R. 

Two algorithms have been developed: online graph 
reduction for edge deletion on the left side of the graph, and 
offline graph reduction for edge deletion on the right side of 
the graph. The online algorithm removes the transitive edges 
at the real-time when every node joins the graph. This 
procedure is performed at the first stage of correlation and 
before alert aggregation in order to minimise the system's 
processing time. The offline algorithm results in a further 
graph reduction if any redundant connection exists after the 
graph is built, starting from the leaf nodes to the root nodes. 

 To clarify the idea, consider the alerts correlated by the 
system in the initial stage shown in Fig.5. There are five nodes 
and eight edges connecting these nodes to represent the causal 
relationship. In Fig. 5 (a), the number of the representing 
nodes n is half the number connecting arcs #V. The edges 
1→5 and 2→5 can be deleted because they are redundant and 
the description of the intrusion sequence will not be affected. 
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In the proposed reduction algorithm, each node has two lists of 
children and parents, and the aim is to remove the duplicates 
in these. 

 
Fig. 5.   Example of graph reduction. 

VI. EVALUATION 

DARPA 2000 datasets, including LLDDOS 1.0 and 

LLDDOS 2.0 [18], are often used to evaluate IDSs and alert 

correlation systems. They consist of two multi-stage attack 

scenarios to launch Distributed Denial of Service attacks 

(DDoS). The evaluation goal is to test the effectiveness of our 

approach to recognize attack scenarios, to correctly correlate 

the alerts, and to minimize the alerts volume. We have used 

these datasets for their available ground truth to assess our 

correlation approach and to compare our results with those of 

other researchers. These datasets do not contain the actual 

alerts from the IDS sensors, and hence we have generated 

them using a Snort sensor. The detected events evolve over 

time instead of by batch analysis. 

Our proposed system has achieved high levels of accuracy 
among the datasets in LLDDOS1.0, and acceptable levels in 
LLDDOS2.0 as shown in Table. 1. The only low accuracy rate 
recorded is from the analysis of the DMZ2.0 dataset, and of 
which we are aware because the actual attack was performed 
inside the network. In addition, the volume of alert 
information has been significantly reduced, achieving more 
than a 90% reduction rate in most test cases. 
 

VII. CONCLUSION 

We have proposed a correlation framework to achieve high 
quality multistage attack recognition and to provide the 
security operator with a global view of the security 
perspective. The pre- and post- condition approach is used to 
identify the logical relations among low level alerts. The alerts 
are aggregated, verified using vulnerability modelling, and 
correlated to construct multi-stage attacks. The results show 
that our approach can effectively detect multi-stage attacks. 
The resulting attack graph is reduced due to implementation of 
the graph reduction algorithms.  

The proposed approach can build an overall view of the 
system's security status even with incomplete alert 
information. The outcome of the proposed framework is the 
minimisation of the effects of missing audit data, the reduction 
of the large volume of redundant alert which are mostly false 
positives, and the extraction of an attack behaviour summary 
in the form of a multi-stage attack scenario 
 

TABLE I.  SYSTEM EVALUATION 

 
 LLDOS1.0 LLDOS2.0 

 DMZ Inside DMZ Inside 

# elementary alerts 3684 720 1214 199 

# related alerts  1262 369 12 25 

C
or

re
la

tio
n 

ra
te

 

# relevant correlations 1849 2915 61 91 

# detected correlations 1788 2959 69 96 

Recall rate (%) 88.4% 93.7% 60.9% 73.6% 

Precision rate (%) 91.5% 92.3% 68.9% 82.7% 

Correlations with 
aggregation 

177 156 22 65 

# detected events 25 17 3 6 

# aggregated alerts  135 114 17 37 

Reduction rate 96.3% 84.2% 98.6% 81.4% 
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