
 International Journal of advanced studies in Computer Science and Engineering
IJASCSE Volume 4, Issue 9, 2015

www.ijascse.org Page 14

Sep. 30

Data control in virtual honeynets based on

operating system-level virtualization

Pavol Sokol
Institute of Computer Science

Faculty of Science, UPJŠ in Kosice

Kosice, Slovakia

Ján Host
Dcore Slovakia, s.r.o.

Kosice, Slovakia

Michal Vaško

Dcore Slovakia, s.r.o.

Kosice, Slovakia

Abstract— A virtual honeynet plays a very important role in

modern network security. Data control within should be able

to ensure the honeypots cannot be used to attack other systems

and computer networks. Also, the data control should be

invisible for an attacker. In this paper we propose such

framework. This framework is based on a set of legal and

technical requirements and it represents whole new approach
to data control.

Keywords - Honeypot; honeynet; virtual honeynet; data control;

decision module

I. INTRODUCTION

To protect and secure communication between network
services administrators are using limited set of tools. In past
years these tools are less effective than they used to be
because of advanced security threats. For that reason it is
crucial for responsible individuals to improve methods that
are used to protect networks from attackers. This is where
the honeypot and the honeynet principle steps in. It
represents a modern approach, which can defend given
systems more adequately.

One definition of honeypot states that a honeypot is a
“security resource whose value lies in being probed,
attacked, or compromised" [1]. Primarily honeypots are
categorized by the level of interaction, purpose, role and
deployment. We in this paper consider only categorization
by level of interaction, namely low-level interaction
honeypot and high-level interaction honeypot. The low-
interaction honeypot uses software emulation of network
services and operating systems on the host operating system
to detect an attacker. A high-interaction honeypot works
differently; it permits the attacker all services on the given
operating system and platform, nothing is restricted.

In the approach discussed in the following text, only the
UNIX-like operating system can be used. According to
W3Tech´s survey on the usage of operating systems for
hosting websites [2] the UNIX-like operating system is used
by 67.7\% of all the websites running on known operating
systems.

A honeynet is a high-involvement honeypot. It shares the
same problems and takes the same risks as are characteristic
for many networks in different organizations today. It is “not

a single system but a network of multiple systems” [3]. The
primary value of honeynet lies in analysis of data on existing
threats and zero-day knowledge threats. There are some
modifications made to the honeypots to the extent of the
attacker not knowing it. This gives him/her a full range of
operating systems, applications and functionality within
them to use [4].

There are several definitions on what is virtual honeynet.
One of them states virtual honeynet can be defined as “a
complete honeynet, running on a single computer in a virtual
environment” [4]. A virtual honeynet can also be defined as
“a technology that virtually implements many different
operating systems in one hardware computer, and hence
instead of having a honeynet of different physically separate
honeypots, all the honeypots will be virtually set in one
machine and still appear to the attacker as different separate
machines” [5]. Virtual honeynets combine all the elements of
a honeynet into a single physical system. Not only are all of
the three requirements of data control, data capture, and data
collection met, but also the actual honeypots themselves run
on the single system [6].

There are different approaches to virtualization, namely
full virtualization, paravirtualization and operating system
level virtualization. In this paper we focus on the last
mentioned approach. The kernel of an operating system
allows multiple isolated userspace instances (containers).
The advantage of this method lays mainly in performance
due to little or even no overhead. Its disadvantage is kernel
sharing of the host and guest. An operating system based on
the Windows kernel cannot be run in a host operating system
based on the UNIX kernel. Also, if the kernel crashes or is
compromised, all containers crash or are compromised as
well. In the design of the proposed system we use the
implementation of the Linux container (LXC) [7]. LXC is a
lightweight virtual system mechanism, which builds up from
chroot system call in order to create a full-featured, reliable
and secure mechanism for the separation of the processes.

A successful deployment of a virtual honeynet is a
successful deployment of its architecture. There are some
core elements of the virtual honeynet´s architecture [3].

 Data control is the first requirement whose purpose
is to control and contain the activity of the attacker.

 Data capture monitors and logs all of the attacker's
activities within the honeynet.

 International Journal of advanced studies in Computer Science and Engineering
IJASCSE Volume 4, Issue 9, 2015

www.ijascse.org Page 15

Sep. 30

 Data collection – in case when the organization has
more than one honeynet, all data has to be captured
and stored in one central location.

 Data analysis is an ability to analyse the data
collected from the honeynet.

The single most important purpose of data control is
deploying a secure and safe honeynet, so that the attacker
cannot compromise other, production networks. This is the
most important function and it always has to be given the
highest priority when implementing a honeynet [4]. Data
control cannot prevent all attacks, but it tries to mitigate the
risk of the honeypot being used. There are many data control
techniques, such as counting the outgoing connections of the
honeypot. Honeynet and data control within should be
configurable remotely by a skilled administrator at any given
time, so if a problem occurs, he or she can intervene
immediately. The honeynet also has to have an automatic
alerting system.

Abusing the honeynet is the main problem of deploying
one. For example, if the attacker takes over the honeypot, he
or she may attempt to launch exploits against a no-
honeypot´s system (e.g. a web server). After several
successful attempts, all further activity including any
exploits, would be blocked. In such a case the attack is not
carried out. Therefore, the concept of data control is an
essential issue.

The first contribution of this paper lies in the proposed
data control in a virtual honeynet. The concept of data
control is not new, but our design is based on a set of both,
technical and legal requirements. Joshi [6] outlines technical
requirements for deployment and usage of data control in
honeynets. Based on his paper we have outlined how the
proposed system takes into account the eight requirements
that data control needs to function properly and to reduce the
risk to the minimum. Sokol [8] discusses the liability of
honeynets´ administrators and outlines the honeynets´ data
control, which meets the requirements of the EU law (legal
requirements). According to him, the data control should
contain five components including firewall, with restrict
white list, dynamic connection redirection mechanism,
emulated private virtual network, honeypots and control
center. This control allows trained administrator of honeynet
to monitor connections and quickly respond to incidents. The
proposed system includes all these parts.

The second contribution is the fact that the proposed data
control takes into account all types of honeypots according to
their interaction.

This paper is organized as follows: In Section II, the
paper discusses the related works in the field of data control.
Section III focuses on proposed system, its design and

discusses the specific parts of this system and shows how the
proposed system meets technical and legal requirements.
Section IV focuses on the decision algorithm, which is a
sequence of control steps. Section V outlines implementation
of four modules of proposed system. The last section
contains conclusions and the authors´ vision of the future
research.

II. RELATED WORKS

The idea of data control is not novel. There are a lot of
papers describing how to control honeypots and honeynets
so as to prevent their abuse. Joshi [6] proposes a design of
the deployment of a virtual honeynet with a unique data
control solution. A number of researches close to this area
have been made, we will mention just some of them. Tian-
hua [9] deals with the general idea of the honeynet, its
deployment and the necessity of using some kind of
virtualization technology in order to solve the low hardware
utilization, complexity of configuration and difficulty of the
management of such a honeynet. They consult the proposal
of Pakistan Honeynet Project. Sharma [10] discusses the
need to use the Honeywall to secure the honeynet. The
Honeywall is a powerful tool for capturing attacks in
honeynet environment. The information gathered from the
Honeywall can be used in designing an efficient model
against malware in computer networks.

Yan [11] presents a new User-Mode Linux based virtual
honeynet architecture. The honeypot controller is the new
virtual honeynet component that assists in data control.
Zhang [12] suggested a honeynet using XEN virtualization
technology. The virtual honeynet system includes dynamic
resource allocation, data control, data capture, data analysis.
It is lightweight, but it has a high performance, which has
been verified with extensive experiments. Mumtaz [13]
introduces a mechanism of intrusion detection based on high
interaction honeypots to assist efficiently in gathering
information concerning attackers attacking an enterprise
network via the Internet. The proposed system consists of
five constituent modules: Honeypots, Sniffing, Tracing,
Alert and Control.

All of the above mentioned virtual honeynets use other
virtualization technologies than the operating-system level
virtualization. Also, none of them have used advanced
systems to control the data or data control with remote
control and double data control, just a simple control or
blocking of connections. Our proposed data control focuses
on operating system level virtualization and much more
sophisticated data control than ever before.

 International Journal of advanced studies in Computer Science and Engineering
IJASCSE Volume 4, Issue 9, 2015

www.ijascse.org Page 16

Sep. 30

Figure 1. Proposed data control in virtual honeynet.

III. PROPOSED DATA CONTROL IN VIRTUAL HONEYNET

As we have mentioned before, the main contribution of
this paper is the proposed data control in a virtual honeynet,
especially in a virtual honeynet based on operating system-
level virtualization. The architecture of the proposed
distributed system (Fig. 1) consists of six basic components,
namely honeypots, decision module, control center, emulated
services, internal virtual network and sandbox.

Connections to the virtual honeynet are allowed (all
network protocols). On the other hand, connections from the
honeypots are restricted. Based on decision modules with
decision algorithm some connections are allowed to go out
of the virtual honeynet (only ICMP, HTTP, SSH and DNS
protocols), some connections are redirected to the emulated
services. Other connections are dropped. A decision
algorithm determines whether a connection is to be allowed,
redirected or dropped. Since connections from the virtual
honeynet are restricted, the proposed system contains an
internal virtual network. Connections to the internal virtual
network are allowed in both directions. The control center is
one of the essential parts of the proposed system. It allows a
trained administrator of the virtual honeynet to monitor
connections and quickly respond to incidents.

The proposed system is based on technical requirements
[6] and legal (EU law) requirements [8]. In the following
subsections we focus on individual parts of the proposed data
control in more detail and discuss its technical requirements.

A. Safety zones

Before discussing individual parts of the proposed system
and decision algorithm, it is necessary to outline the basic
scheme of security zones. A zone can be seen as a network
or virtual network with its own range of IP addresses
connected to one virtual interface, such as virtual network
(vlan) or virtual ethernet device (veth). The idea of dividing
the honeynet into zones comes from the need to divide
individual networks, in which groups of computers we want
to filter a communication are located. The virtual honeynet is
divided into several zones, which are shown in Fig. 2.

The zone of the Internet is the network out of the virtual
honeynet. The zone of the honeypots is the zone of the
virtual network of honeypots. The communication to the
zone of honeypots is allowed, but every packet from the zone
of honeypots is checked. The zone of the virtual network and
the zone of the emulated services are zones, where the
ingoing connection from the zone of honeypots is allowed.
Connections from other zones are prohibited. The zone of
the device is the special zone representing the virtual
network (openvpn, ciphered tunnel, secondary connection),
from which it will be possible to connect to the host
operating system.

 International Journal of advanced studies in Computer Science and Engineering
IJASCSE Volume 4, Issue 9, 2015

www.ijascse.org Page 17

Sep. 30

B. Honeypots

Honeypots form a substantial part of the virtual honeynet
and they are partly included in the proposed system.
Honeypots are shown in Fig. 1 (number 1). In the proposed
system, the authors consider all types of honeypots according
to interaction. Each low-interaction and medium-interaction
honeypot consists of one virtual machine. The decision
module is part of the virtual machine.The data control is very
important in high-interaction honeypots. This type of
honeypot consists of two virtual machines. The decision
module is a part of one of them.

C. Decision modules

Decision modules are the main part of data collection
and they are shown in Fig. 1 (number 2). The proposed
system has two types of decision modules. The first module
is the main module for the virtual honeynet and is closely
connected to the firewall. Second decision modules are
placed in virtual machines. Each connection that goes
through the firewall is controlled by the decision module.
These modules deal with each connection according to a
decision algorithm showed in the following section.

Usage of this part of the proposed system meets the
following technical requirements: the automated control,
control layers, control connections. Since decision modules
are placed in the firewall and in the virtual honeypots, the
technical requirement of at least two layers of data control to
protect against failure is satisfied. All control mechanisms
are located on the host operating system. Therefore, the
attacker cannot access them. Some parts of the decision
modules are located in kernelspace.

D. Control center

Data control center is a remote part of the proposed
system. It is shown in Fig. 1 (number 3). It allows a trained
administrator to control decision modules at any time.
Connections between the control center and decision
modules are via a secure channel (e.g. s-tunnel). It includes a
web interface. This control center allows to:

 start, stop and freeze honeypots – in case that
decision modules allow harm connections,

 show statistics – statistics on the number of
connections and the amount of data in the
connections,

 show alerts – if the decision module drops or
redirects the connection and

 show and modify the rules for decision centers.
Using the advantages of the operating system level

virtualization, a trained administrator is able to perform the
above mentioned activities without the knowledge of
operating system level virtualization. It is due to the fact that
the host operating system is able to access the honeypots and
control all resources. Using this part of the proposed system
satisfies the following technical requirements: manual data
control, configurable at any time, remote administration and
alerting.

E. Internal virtual network and emulated services}

The internal virtual network consists of several virtual
machines bridged to an internal physical interface. This
network is shown in Fig. 1 (number 4) and it is visible only
from the honeypots and the internal virtual network. The
motivation for this network is based on the fact that the
outgoing connections from the honeypots are restricted. The
internal virtual network is visible only for the attackers and
its purpose is to study the attacker's behavior, since it mimics
a regular school computer study room.

Emulated services are different from the internal virtual
network in terms of deployment and creation, but they are
very similar in usage. In the proposed system the Honeyd are
used to implement several services (ICMP, SSH, DNS,
HTTP).

F. Sandbox

Cuckoo sandbox is an optional part of the proposed data
control [14]. It is an open-source software for automating the
analysis of suspicious files. In order to do so, it makes use of
custom components that monitor the behavior of the
malicious processes while running in an isolated
environment. Inputs for the sandbox are files, which were
modified in honeypots within the internal virtual network.
Sandbox makes hash and the hash is subsequently compared
with an external database (e.g. virustotal). If the comparison
is successful, the administrator is informed. Otherwise, the
files are sent to the internal sandbox (a virtual machine –
Linux operating system) or external sandbox (a physical
machine out of the virtual honeynet – Windows operating
system).

IV. DECISION ALGORITHM

The functioning of the decision module is based on a
decision algorithm, which handles each packet and decides
what happens with it. Its scheme is shown in Fig. 3. There
are four final states:

 permit the packet to/out of the honeynet (state
ACCEPT);

 redirect the packet to the internal virtual network
(state INSIDE);

Figure 2. Zones in virtual honeynet.

 International Journal of advanced studies in Computer Science and Engineering
IJASCSE Volume 4, Issue 9, 2015

www.ijascse.org Page 18

Sep. 30

Figure 3. Decision algorithm.

 redirect the packet to the emulated service (state
REDIRECT);

 drop the packet (state DROP).
As we have mentioned before, the proposed framework

controls the outgoing communication, not the incoming one.
It is due to the nature of honeynets. From this point of view
each controlled packet has its source zone: the honeypot and
the destination zone: the internet.

At first, the decision algorithm tests whether the packet is
allowed to go outside of the honeynet, including the internal
network (check destination IP address). The next step is
testing the packet whether its destination zone is the internal
network. If the control passes, it is redirected there.
Otherwise, the decision algorithm tests the packet for its type
and handles it according to the type. Our proposed system is
able to handle the following network protocols: http
(80/TCP), ICMP, SSH (22/TCP) and DNS (53/UDP). In
other cases, the packet is dropped.

In the following subsections, we outline the concept of
the decision algorithm for each network protocol separately.

In case of SSH protocol it is needed to emphasize some
notes. The control of SSH connections is similar to the
control of HTTP connection with several differences. One of
the differences is the need to obtain the private key for SSH
session. As we have mentioned before, the proposed
framework is based on operating-system level virtualization.
Therefore, the host operating system has the access to the
memory where the keys of SSH connections are stored.

A. Control of ICMP connections

At first, the decision algorithm checks the limits of ICMP
connections. The default value is 15 packets per second
(inspired by the default value, but configurable as needed by
setting the amount of packets allowed per time frame). The
next step is the control of the type of ICMP packet and its
length. The allowed types of packets are 0 (echo request) and
8 (echo reply). This is also configurable, if needed. If the
packet passes both tests, communication is accepted and it is
allowed to go to the Internet. If that is not the case,
communication is dropped after either tests.

 International Journal of advanced studies in Computer Science and Engineering
IJASCSE Volume 4, Issue 9, 2015

www.ijascse.org Page 19

Sep. 30

B. Control of HTTP and DNS connections

The decision algorithm in case of HTTP connection and
in case of DNS connection is similar. At first, the decision
algorithm checks the limits of HTTP or DNS connection.
The default value is 50 connections per second (in case of
HTTP) and 15 connections per second (in case of DNS).

Subsequently, it makes a copy of the packet and sends it
to the requests´ builder (e.g. Hadoop). This builder is only
for HTTP´s connections, not DNS´s connections. The
purpose of the requests´ builder is to create a part of HTTP´s
connection. In this builder, the second step is to decompress
the payload if a known kind of compression was detected,
such as gzip. The next step is to check the regular expression
on the body of a part of HTTP´s connection. If every test
passes, the final step in the Requests´ builder is the check of
threat usage by the external frameworks (e.g. virustotal).

The first step of the main control of HTTP and DNS
packets is the parsing of the header. This step checks
whether the packet is HTTP or DNS. After that the decision
algorithm checks ACK and SYN flags (only in control of
HTTP packet) and checks next packet (e.g. correct order,
check of overlaying of datagram). The next optional step is
the usage of a regular expression over the body of packet. In
the proposed framework there is a limited set of regular
expressions. It might be the regular expression for detection
of network paths, such as \verb/^(?:[a-zA-
Z]\:|\\\\[\w\.]+\\[\w.\$]+)\\(?: [\w]+\\) *\/ \newline
\verb/w([\w.])+\$/,

 or similar. The next step is the check of the output of
requests ́ builder. If the last two steps fail, the packet is
redirected. Otherwise, the decision algorithm checks threats.
In this step the proposed system uses an external framework
to test threats (e.g. virustotal). If this step passes, the packet
is accepted. In the opposite case, the packet is redirected.

V. IMPLEMENTATIONS

For the purpose of implementation, authors have used
computer system with following hardware configuration -
HP Proliant Gen 4 2U, 2x Intel (R) Xeon (TM) CPU
3.00GHz 6GB RAM. Authors have used Debian 7, x64
based operating system with LXC installation. The proposed
data control consists of modules. The implementation of
modules was designed using a standard design pattern MVC
(Model-View-Controller). At present, the following modules
have been implemented:

 decision module (Java);

 database module (MySQL) and

 web module (Java + Rest API) with control center
(Python, JavaScript, HTML).

A. Database module

As a storage authors decided to use a relational database
MySQL. Captured packets are stored in the table called
Packets in binary form. This form provides us with the
opportunity to recover the original data packet to be used by
libraries working with packets in Java language. Table

Packets_metadata contains basic information about the
packet, such as source port, source IP address and destination
port and destination IP address, protocol type etc.

The table packet_validator stores the results of packet

validations from decision module. These results are
displayed in the web module. The table regular expressions
contain regular expressions used in the validation process of
packet´s body. The table system variablescontains global
variables used to configure the system via web module.

Above mentioned scheme is operated by database

module. This module was designed the way so it can be
replaced by any other database system, such as an object,
graph or other. It is due to our implementation of interfaces
(packetDao, expressionDao, honeypotDao). This module
was implemented in JAVA 8. Authors have used Spring
Framework data access integration JDBC version 4.0 to
establish database connections and to process all database
requests.

B. Decision module

The decision module is used to validate and redirect
packets towards the honeynets. Two protocols were
implemented, namely HTTP and ICMP protocol. This
module is of the producer-consumer type. Using the library
JPcap [15] and jNetPcap [16] the producer captures packets
and stores them in a queue(ConcurrentLinkedQueue).
Subsequently the packets are stored in the database using a
database module.

The decision module stores all communications to the

database for further analysis. It is possible to change system
to offline mode (Offline-Packets-Input-Stream). The
consumer processes the data stored in the queue. The first
packet from queue is periodically chosen and sent to
PacketValidatorFactory where the type of protocol is
examined. Subsequently PacketValidatorFactory determines
whether it is a HTTP or ICMP protocol (or any else). Packets
satisfying the above conditions are subsequently processed
pertaining validator (HttpValidator, IcmpValidator). Using
PacketValidatorFactory authors have achieved that it is easy
to add additional validation protocol or modify existing
implementation. Proposed data control allows launching new
producers and consumers on the origin server thus we can
separately capture all network interfaces and protocols (new
producer). If the processing is slow, it is possible to speed it
up by addition of one or more consumers.

 International Journal of advanced studies in Computer Science and Engineering
IJASCSE Volume 4, Issue 9, 2015

www.ijascse.org Page 20

Sep. 30

C. Web module with control center}

The web module is used for communication between the
database module and user interface. It processes requests
from the user interface. Using the own REST API it can be
replaced with another interface (e.g. web-based or mobile
interface). For that communication data in JSON (JavaScript
object notation) format are used. This module was
implemented in Java 8 and Spring Framework.

Honeypots can be added on the fly using the control
center. It is possible to change their configuration, control
their status and modify it. Also there are the statistics and
graphs related to data control and its possible settings. Web
module with control center is shown in Fig. 4.

VI. CONCLUSION

This paper outlines a proposal of a new data control in
virtual honeynets. This framework (Fig. 5) consists of six
parts from which the decision module is the most important.
In this proposal we focus on the low-interaction and the

high-interaction honeypots. Within the proposed framework,
we have designed a new approach to data control´s decision,
which can be used in research, but also in production
systems. It can be modified, upgraded an installed to
personal and specific use case.

In the future we will focus on implementation of the
some parts of proposed system, especially internal virtual
network and sandbox. The deployment of the SSH branch in
decision module is a challenge for the future research.

ACKNOWLEDGMENT

We would like to thank our colleagues from the Czech
chapter of The Honeynet Project for their comments and
valuable input. This paper is funded by the Slovak Grant
Agency for Science (VEGA) grant under contract No.
1/0142/15, VVGS project under contract No VVGS-PF-
2015-472 and Slovak APVV project under contract No.
APVV-14-0598.

REFERENCES

[1] Fabien, P., Dacier, M., and Debar, H.: „White paper: honeypot,
honeynet, honeytoken: terminological issues, in Rapport technique“,

EURECOM 1275, 2003.

[2] W3Techs „Web technology survey, usage of operating systems for
web-sites“, http://w3techs.com/technologies/overview/operating_

system/all (online)

[3] Spitzner, L. „Honeypots: Catching the insider threat“, Proceedings of

19th Annual IEEE Computer Security Applications Conference, pp.
170-179, 2003.

[4] The Honeynet project, „Know Your Enemy: Learning about Security

Threats (2
nd

 Edition)“, Addison-Wesley Professional, 2004.

[5] Mairh, A. et al., „Honeypot in network security: a survey“,
Proceedings of the 2011 International Conference on Communication,

Computing and Security, pp. 600-605, 2011.

[6] Joshi, R. C., and Sardana A., „Honeypots: A New Paradigm to
Information Security“, CRC Press, 2011.

[7] LXC project, available at https://linuxcontainers.org/ (online)

[8] Sokol P., Andrejko M., „Deploying honeypots and honeynets: issues

of liability, in Computer Networks“, Springer International
Publishing, 2015.

[9] Shi-wei, Y., Xiu-shuang, M., and Wei-dong, W. A. N. G., „Core
Functions Analysis and Example Deployment of Virtual Honeynet“,

Computer Science, 3, 2012.

[10] Sharma, N., and Sran, S. S, „Detection of threats in Honeynet using
Honey-wall“, International Journal on Computer Science and

Engineering, vol. 3, pp.3332-3336, 2011.

[11] Yan, L. K, „Virtual honeynets revisited“, Proceedings from the 6th
Annu-al IEEE SMC Information Assurance Workshop, pp. 232-239,

2005.

[12] Zhang, W., He, H., and Kim, T, „Xen-based virtual honeypot system
for smart Device“, Multimedia Tools and Applications, pp. 1-18,

2013.

[13] AL-Mukhtar, M. M. A., and Kasim, B. W, „A honeynet framework to
pro-mote enterprise network security“, International journal of

computer engineering and technology, vol.4, pp. 404-413, 2013.

[14] Cuckoo project, available at http://www.cuckoosandbox.org/ (online)

[15] JPcap library, available at http://jpcap.sourceforge.net/ (online)

[16] jNetPcap library, available at http://jnetpcap.com/ (online)

Figure 5. Proposed framework.

Figure 4. Control center.

http://w3techs.com/technologies/overview/operating_system/all
http://w3techs.com/technologies/overview/operating_system/all
https://linuxcontainers.org/
http://www.cuckoosandbox.org/
http://jpcap.sourceforge.net/
http://jnetpcap.com/

