
International Journal of advanced studies in Computer Science and Engineering
IJASCSE, Volume 4, Issue 7, 2015

www.ijascse.org Page 1

Jul. 31

Dynamic Modeling for Representing Access Control

Policies Effect

Kambiz Ghazinour

Department of Computer Science

 Kent State University Kent, Ohio, USA

Mehdi Ghayoumi

Department of Computer Science

Kent State University Kent, Ohio

Abstract: In large databases, creating user

interfaces for browsing or performing insertion,

deletion or modification of data is very costly in

terms of programming. In addition, each

modification of an access control policy causes

many potential and unpredictable side effects which

cause rule conflicts or security breaches that affect
the corresponding user interfaces as well. While

changes to access control policies in databases are

inevitable, having a dynamic system that generates

interfaces according to the latest access control

policies becomes increasingly valuable. Lack of such

a system leads to unauthorized access to data and

eventually violates the privacy of data owners. In

this work, we discuss a dynamic interface that

applies Role Based Access Control (RBAC) policies

as the output of policy analysis and limits the amount

of information that users have access to according
to the policies defined for roles. This interface also

shows security administrators the effect of their

changes from the user’s point of view while

minimizing the cost by generating the interface

automatically.

I. Introduction

Enforcing access control is a crucial issue in all

computer systems. Using access control mechanisms

guarantees that malicious and questionable users

cannot access sensitive data and also legitimate users

cannot accidentally access parts of the data that are not

supposed to be revealed. In large databases, where we

may have hundreds of different roles and access
control policies, handling RBAC policies is even

harder [4]. Furthermore, programming user interfaces

that conform to the latest dynamic access control

policies is not generally a straightforward job for the

following reasons: first, fields may be added to the

tables in the database after the interface has been

designed. Hence, the user interface must be redesigned

again to represent the data included in newly added

fields. Second, as the number of users and roles

increase in the database, it becomes difficult to

program different user interfaces for each role or user.
Although applying RBAC [7] facilitates

managing access control policies more efficiently

than conventional access control methods such as

Mandatory Access Control (MAC) and Discretionary

Access Control (DAC) [6], designing a dynamic

interface that conforms to the access control policies

needs more work.

 Contribution of this paper

In this work, we introduce a model that creates

forms dynamically based on the tables' structures and
the access policies in the relational database

management system (RDBMS). This approach reduces

the extensive amount of work needed to rebuild user

interfaces based on the access control policies

statically. Furthermore, this approach enables the

security officers and designers to have the opportunity

for immediate testing to see if roles are working as

they should. This contribution is discussed in Sections

3 and 4 in which we introduce our approach and the

dynamic user interface developed based on it. To

illustrate the functionality of the dynamic interface,
Section 5 describes an example to demonstrate our

application. Section 6 concludes the paper and

gives possible future research directions to extend this

idea.

II. Background and Related Work

In RBAC [7], object accesses are controlled by roles

(or job functions) in an enterprise rather than a user or

a group. RBAC, as an alternative to conventional DAC
and MAC mechanisms, is required for handling data

authorization management in a complex environment

as has been discussed in the literature [7]. RBAC has

been introduced as a cost effective access control

mechanism [6]. Due to its characteristics (i.e. rich

specification, separation of duty and ease of

management), it is being employed in a large variety of

domains [8].

In RBAC, the main goal is to provide a model and

tool to help manage access controls in an enterprise

with a very large number of users and data items. The

main components of RBAC are roles, users and
permissions where role represents job functions, and

permissions are defined on objects and operations. In

mailto:kghazino@kent.edu
mailto:mghayoum@kent.edu

International Journal of advanced studies in Computer Science and Engineering
IJASCSE, Volume 4, Issue 7, 2015

www.ijascse.org Page 2

Jul. 31

particular, permissions can be defined in terms of
allowing or preventing a role from performing a

specific action on a specific data object.

There have been many extensions of RBAC

introduced in the literature. For instance, Byun and Li

[2] introduced a purpose-based access control for

privacy protection in relational database systems which

is based on Role-based access cotrol model. As another

example, Dafa-Alla et al., [3] introduced PRBAC: An

Extended Role Based Access Control for Privacy

Preserving Data Mining.

Although, according to the National Institute of

Standard and Technology (NIST) standard, there are

different levels of RBAC including flat, hierarchy,

constrained, and symmetric options [8], in this work,

we focus on the flat model and leave the application of

other techniques as they are really extensions for future

work.

Figure 1: Flat RBAC model

In flat RBAC, permissions are assigned to each role

and users are assigned to one or more roles as shown in
Figure 1. A user is granted access to an object when

the user is active in a role that has the required

permissions. For instance, these two tuples

(Staff, +, Read, email)

(Staff, -, Update, name)

mean any user with the Staff role has the privilege to

read the field email but not to update the field name.

Some of the access control policies can result in a

possible access rules conflict that affects the access
level of the user. Vaniea et al. [9] discuss an interface

that visualizes the output of policy analysis and helps

security professionals find conflicting policies. In our

work, we introduce a software package that

dynamically creates user interfaces based on the user’s

latest access control privileges. We believe this

dynamic user interface reduces the extensive amount of

work needed to rebuild user interfaces based on the

access control policies statically.

Agrawal et al. [1] propose a language construct and

implementation design that restricts the queries
submitted to the RDBMS to enforce privacy policies.

In their solution, fields that the user requests to see but

does not have privilege to access, are returned with a

null value.

This is different from our approach in which the
user only observes fields for which they have

privilege to see. Therefore, information about existence

of the field(s) is not revealed to malicious users.

III. Our Approach

In this section, we describe our approach to creating

a dynamic user interface (DUI) based on user access

control. As illustrated in Figure 2, our model consists

of two main engines, Component Manager and RBAC

Extractor. The data flow is described as follows.

Figure 2: Dynamic interface data flow and
architecture

1. When the user wants to log in to our software, the

user name and password should match the ones

entered into the database by the security manager or

database administrator.

2. After the user authentication is complete, by

reviewing the User Assignment relationship, the

RBAC Extractor engine determines roles that are
assigned to the user by the Security Administrator.

According to the RBAC architecture [7], each user

is associated with at least one role.

3. The list of tables the user is allowed to observe are

then displayed and they specify the form they will

use. This form is related to one or more table(s) in

the database.

4. The RBAC Extractor engine reviews the

Permission Assignment relationship to identify

what permissions are assigned to the related roles

of the user. After considering all the permissions,

RBAC Extractor provides the Component Manager

with a list of permissions for four different actions,
Select, Update, Insert and Delete. These could be

Users Roles Permissions
User Permission

Assignment Assignment

International Journal of advanced studies in Computer Science and Engineering
IJASCSE, Volume 4, Issue 7, 2015

www.ijascse.org Page 3

Jul. 31

extended to other operations but we limit our
discussion to these four operations to illustrate our

system.

5. The Component Manager identifies the related

fields on the desirable table(s) and their

specifications.

6. Finally, the dynamic user interface is created and

displayed to the user based on the data collected

through steps 4 and 5. If the user selects another
table from the list, data flow starts from step 4.

To clarify the task of the Component Manager,

consider the following example. The user wants to

work with a form related to table T which has fields a,

b, c and d. The RBAC Extractor engine determines that

according to the access control policies this user cannot

see (or select) fields b and c from this table since

accessing them is prohibited by one of the user's roles.

Hence, the Component Manager only shows fields a

and d on the form to the user. This approach is also

known as query rewriting and has attracted much

attention in the literature [1, 5]. The same procedure is

followed for other actions such as Delete, Update and
Insert which affects the user interface as well. We will

discuss each of them in detail in Section 4.

IV. Dynamic User Interface

In this section, we describe our system and

demonstrate its utility. We focused on Microsoft SQL
Server 2000 and 2005 as a well known RDBMS that

supports RBAC mechanism. We also used Microsoft

Visual Basic .NET 2003 to develop the system.

Through ADO .NET the program connects to the

RDBMS and extracts information about users, roles

and permissions stored in system tables.

Generally, in a RDBMS such as MS SQL Server, to
enforce access control policies the following steps are

required of the Security Administrator. First, users and

roles (job functions) are defined. Second, for each role,

privileges to access different objects (tables and related

fields) are defined. Third, one or more roles are

assigned to each user.

There are two forms of permission, grant and
deny. (Deny is different than revoking a

permission , and it essentially means a negative

permission). If the user has a role, and within that role

they are granted access (i.e. Select) to a specific field

or table, then the user’s (Select) query on the table
returns proper results. On the other hand, if the user

is not privileged to perform the specific action on that

field or is denied access to that field, then the result

of the query will be an error message that indicates

insufficient permissions to Select this field. The same
rules apply to Insert, Delete, and Update

permissions.

Handling permissions of one role for a user seems

straightforward since no conflict can occur. However,

often the user has more than one role, and those roles

may contradict one another. For instance, imagine that
Alice has two roles called Role1 and Role2. According

to Role1, she has access to the field CustomerID from

the Customer table and according to Role2, she is not
allowed to see this field. According to the security

policies defined in MS SQL Server system table, Alice

is not allowed to see that field because the deny

permission dominates the grant permission. There are
other possible ways to create contradicting permissions

such as granting access to the whole table for one role

and denying access to specific field(s) of the same
table for another role where a user has both of the

roles.

The algorithm that determines the resulting

combination of the permissions the user has due to
their corresponding roles R1 to Rn on a specific field

has the following pattern:

Resulting Permission(R1,…,Rn)
 result = deny;

 For all the roles from R1 to Rn

If there exist a deny permission then
result = deny and exit

Else if there exist a grant permission then
result = grant

 Return result

Thus, this system is implemented to enforce the

access control policies and different combinations of

the roles defined in RBAC systems. When the user

logs in, the RBAC Extractor engine identifies the user

from the list of available users in the RDBMS. All the

roles associated with the user are then extracted from

the system tables. Using the above algorithm, the

engine then determines conflicting parts and generates

a list of permissions that covers all the roles the user

has and provides the Component Manager engine with

that list. To clarify this, consider a user who has two
roles called Role1 and Role2.

The policies for permissions to access tables and

fields are shown in Table 1. The symbol

represents deny and represents grant access.

If access to a field is not defined by any role (eg. the

Address field in Customers table) then the user should

not have access to that field. In other words, the user

does not have access to a field unless explicitly granted

the privilege.

International Journal of advanced studies in Computer Science and Engineering
IJASCSE, Volume 4, Issue 7, 2015

www.ijascse.org Page 4

Jul. 31

In our software, we have four classes, CDB,
CTable, CGrid, and CSet. Class CDB is responsible for

connecting to the RDBMS and submitting queries to

the database. CTable is a subdivision of CDB which

obtains the name of a specific table in the database and

extracts information about the fields of that table. It

also connects to the metadata and extracts the

information about RBAC policies. In other words,

having the name of a specific table and the user, this

class determines what permissions are assigned to the

user to access that specific table. CGrid and CSet are

two classes that deal with the dynamic user interface
itself. CGrid is used to display records of a table in the

form of a grid. CSet is

Table 1. Sample of conflict resolution
domination

Table Field R1 R2 Result

Customers

CustomerID

CustomerName

Address

Employees

EmployeeID

EmployeeName

Phone

Orders

EID

CID

OrderDate

Payment

in charge of managing the components of a form

related to one or more tables.

To clarify the use of CGrid and CSet we define that

CGrid is used for the Select, Update and Delete actions

whereas the CSet is used when we want to Insert a new

record in a table and we need a form that contains all

the corresponding fields.

The above classes interact with the dynamic user
interface catalogues that we add to the RDBMS.

Although there are some features of the fields such as

allow null and data type that can be recognized from

the tables themselves, there are other features that need

to be controlled by the user interface as well. Some of
these features are location of the components on the

form, enforcing the accurate data type entry by the

user, component's visibility on the form, and so on.

Generally, these features are hard coded in an

executable program which makes a static user

interface. To represent the semantics of our model we

propose user interface catalogues in which we store

component features in the database to be retrieved on

the user’s demand. The software then uses these

parameters to create the proper user interface. These

catalogues, DI_FORMSET and DI_GRIDSET,

represent information about rows and columns in a grid
and components in a tabular form.

We have implemented these catalogues as a set of

tables added to the RDBMS. Figure 3 illustrates
these catalogues and the corresponding tables.

DI_FORMSET contains DI_Set, DI_Ctrl,

DI_CtrlType, and DI_Ref tables. DI_GRIDSET, in

addition to tables DI_Grid and DI_GridCol, shares

DI_Ref with DI_GRIDSET.

When a form is selected by the user, the system

refers to the tables DI_Set and DI_Ctrl and extracts all
the information related to that specific table. In the

next step, all the components of the form are located

and their properties are set according to the

information derived from DI_Set and DI_Ctrl. It is

clear that in this phase, tables DI_CtrlType and

DI_REF help the system to enforce the correct data

types of the components and referring tables,

respectively.

When a form is required to be in the form of a

grid, DI_GRIDSET catalogue and its corresponding

tables provide information to the CGrid class to
illustrate data in a grid. It should be mentioned that to

fill in the above tables we have prepared a simple

user interface called DI_Creator. Using this software,

the Security Administrator can define initial features

Figure 3. Dynamic interface catalogues

DI_FORMSET

DI_GRIDSET

International Journal of advanced studies in Computer Science and Engineering
IJASCSE, Volume 4, Issue 7, 2015

www.ijascse.org Page 5

Jul. 31

of each element on the form according to the
specifications described in the design phase of the

application development. Section 5 will present an

example to clarify the task of each table and class.

V. Example

Alice has both Staff and Advisor roles in a

company. Based on her roles and the access control
policies defined by the Security Administrator of the

company, she has corresponding accesses of Select,

Insert, Update and Delete on different fields and

tables. For instance, as shown in Figure 4 (a) and (b),

role Advisor can Select all of the fields in the Customer

table. However, role Staff can Select the field City, and

is not allowed to see other columns of the customer

table (except the field CompanyName where no grant

or deny permission is explicitly specified).

(a)Advisor’s access control policy

Figure 4. Access control for roles Advisor and Staff

Since Alice has both Staff and Advisor roles, and
we assume that negated permission is dominant,

according to the combinations discussed in Table 1,

she is only able to see the fields City and Company
Name.

Figure 5. Dynamic user interface created

for Alice

As described in Section 3, the RBAC Extractor

engine is responsible for finding the right

combination of roles and provides the results to the

Component Manager. In this example, the Component

Manager needs to show the above two fields in the

Customers table to Alice. Hence, when she logs in to

the system and clicks on the Customers form she sees

the user interface shown in Figure 5.

VI. Conclusion and Future Work

We have presented a model for generating dynamic

interfaces based on the RBAC policy. This approach
can be extremely useful in large databases used in

enterprises where a large amount of resources are spent

to design, develop and maintain the user interfaces.

Since this model dynamically creates the user

interfaces and also enforces the latest RBAC policies,

it saves a considerable amount of time and cost when

producing middleware that works with databases. From

the privacy point of view, unlike current approaches,

our work does not reveal the existence of fields to the

users who are not privileged to access.

Our future work is to extend the techniques

presented in this paper to create a dynamic user

interface for applying privacy policies stored in privacy

preserving database systems. In future work,

developers can add their own class to the software to

support more features. In this case, options like

reporting and printing can be added to the system.

Also, it would be an interesting project to use this

methodology in web-based applications as well.

Another interesting future research direction that
we are working on is to incorporate the notion of trust

(b) Staff’s access control policy

International Journal of advanced studies in Computer Science and Engineering
IJASCSE, Volume 4, Issue 7, 2015

www.ijascse.org Page 6

Jul. 31

in to the model. For example, when a user has
several unnecessary accesses to a piece of data,

the system learns this behavior and reduces the

level of trust in that particular user.

The lack of trust results in automatic modification

of the policies in place which reduces the privilege(s)

given to the user. Once the policy gets modified, it

effects the user interface as well.

VII. References

 R. Agrawal, P. M. Bird, T.W.A. Grandison, G. G.
Kiernan, S. I. Logan, & W. Rjaibi. Extending

Relational Database Systems to Automatically Enforce
Privacy Policies, 2007.

 J. Byun, and N. Li. "Purpose based access control for

privacy protection in relational database systems." The
VLDB Journal 17.4 2008: 603-619.

 A. F.A. Dafa-Alla, E. H. Kim, K. H. Ryu, Y. J. Heo.
“PRBAC: An Extended Role Based Access Control for
Privacy Preserving Data Mining” In Proceedings of the
Fourth Annual ACIS International Conference on
Computer and Information Science (ICIS’05) of IEEE,
2005.

 D. Ferraiolo, D. Kuhn, and R. Chandramouli. Role-
based access control Artech House computer security

series. Artech House, 2003.

 S. Mohan, A. Sengupta, & Y. Wu. Access control for
XML: A dynamic query rewriting approach.
Proceedings of the 14th ACM International Conference
on Information and Knowledge Management, 251-252.,
2005.

 R. Ramakrishnan and J. Gehrke. Database Management

Systems. McGraw-Hill Science / Engineering / Math,
2003.

 R. Sandhu, D. Ferraiolo, and R. Kuhn. The NIST model

for role-based access control: towards a unified
standard. Symposium on Access Control Models and

Technologies: Proceedings of the fifth ACM workshop
on Role-based access control, 26(28):47–63, 2000.

 The Economic Impact of Role-Based Access Control,
RTI Project Number: 07007.012, National Institute of
Standards and Technology (NIST), 2002. [Online].
Available:http://www.nist.gov/director/prog-ofc/
report02-1.pdf

 K. Vaniea, Q. Ni, L. Cranor & E. Bertino. Access
control policy analysis and visualization tools for
security professionals. SOUPS Workshop (USM) 2008.

http://www.nist.gov/director/prog-ofc/report02-1.pdf
http://www.nist.gov/director/prog-ofc/report02-1.pdf
http://www.nist.gov/director/prog-ofc/report02-1.pdf
http://www.nist.gov/director/prog-ofc/report02-1.pdf

