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Abstract: In this paper a theorem for 

general multiple series is established 

using Dixon’s theorem and Srivastava’s 

identities. The theorem proved in this 

paper provides new transformations and 

connections with various classes of well 

known hyper geometric functions and 

even new representations for special 

cases of these functions. 
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I. Introduction 

Let  the sequence of  

parameters given by in the 

contracted notations and   denote 

the product of  Pochhamer symbols 

defined by

  

   (1.1) 

 

                                       where the notation  denotes the Gamma function. 

In 1969, Srivastava and Daoust([7, p. 454], see also [8, p. 37(21, 22)]) gave the following 

multivariable hypergeometric function: 

 

(1.2) 

, 

where for convenience,  

 .   (1.3) 
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The coefficients , 

, , , , 

, for all k are zero 
and real constants(positive, negative)[8] 

and ) abbreviates the array of  

parameters  for all 

k  with similar interpretations for 
others. 

 

In the present paper investigation of general 

multiple series identities is done which 
extend and generalize the theorems of 

Bailey[1], and Pathan[2].The theorem given 

in Section 2 will be seen extremely useful 
as it provides connections with various 

classes of well-knownhypergeometric 

functions and even new representations of 
these functions.Some applications of this 

theorem are given in Section 3. Also we 

deduce special cases in Section 4. 

   

II. General Multiple Series 

Identities   
 

Theorem: Let be the generalized 

coefficient of arbitrary complex numbers, 

where , ,  be complex variables and ,  

be arbitrary independent complex 

parameters (where ) and 

any values of numerator and denominator 

parameters and variables , ,  leading to 

the results which do not make sense are 

tacitly excluded, then 
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Proof. Let  denote the L.H.S of equation (2.1) .Then using the series identity [3]i.e. replacing 

 by  

 

we may write 

 

 

 

 

Using Dixon's Theorem [4]in (2.5) we get 

 

 

Using the identity[9]: 
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as  
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Again applying Srivastava’s identity[9], 

 

in the equation (2.1)and replacing the gamma functions by Pochhamersymbols, we get 

 

 

 

 

 

 

which is the right-hand side of (2.2). 
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Now applying Srivastava's identity[4] 

 

to(2.1) we get 

 

 

 

 

which is the right-hand side of (2.3) 

III.  Applications of theorems 2.1 – 2.3 

3.1.In theorem 2.1 and 2.2 setting  and 

 

,and ,  

we get 

 

(3.1) 
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(3.2) 

Provided the denominator parameters are neither zero nor negative integers and for 

convenience, the symbol  abbreviates the array of m parameters given by 

where  . 

The asterisk in represents the fact that the (denominator) parameter  is always 

omitted for so the set contains only  parameters[9]. 

3.2. In Theorem 2.3, setting  and 

 

, 

, and z=0,  

we get 

 

 

 

 

(3.3) 

IV. Special Cases: 

i. In (2.1) setting  
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ii. In equation (4.1) , 

we get  

 

 

iii. In  (2.1) setting  

 

,  

 

we get 
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