
 International Journal of advanced studies in Computer Science and Engineering
IJASCSE, Volume 4, Issue 1, 2015

www.ijascse.org Page 18

Jan. 31

REDUNDANT FILE FINDER, REMOVER IN MOBILE

ENVIRONMENT THROUGH SHA-3 ALGORITHM

1
MEERA.K 2KRISHNA SANKAR.P 3SRIRAM KUMAR.K

Department of Computer Science and Engineering
K.S.R Institute for Engineering and Technology

Abstract: Mobile environment provides storage as a main service. Data storage is a desired

property when users outsource their data to be stored in a place irrespective of the
locations. File systems are designed to control how files are stored and retrieved. Without
knowing the context and semantics of file contents, file systems often contain duplicate
copies and result in redundant consumptions of storage space and network bandwidth. It
has been a complex and challenging issue for enterprises to seek deduplication technologies
to reduce cost and increase the storage efficiency. To solve such problem, Hash values for
files has been computed. The hash function competition to design a new cryptographic hash
standard `SHA-3' is currently one of the well-known topics in cryptologic research, its
outcome heavily depends on the public evaluation. Testing the finalists in the competition
for a new SHA-3 standard shows generally fast, secure hashing algorithms with few
collisions. Focus of computation is performed for duplicate knowledge removal. Hash
computation is done by the method of comparing files initially and followed by SHA3
signature comparison. It helps to reclaim valuable disk space and improve data efficiency in
mobile environment.

Keywords: Deduplication, Hash code, SHA3, Similarity Measure

Introduction
A hash function is any function that can be
used to map digital data of arbitrary size to
digital data of fixed size, with slight
differences in input data producing very big
differences in output data. The values
returned by a hash function are called hash
values, hash codes, hash sums, or
simply hashes. One practical use is a data
structure called a hash table, widely used in
computer software for rapid data lookup.
Hash functions accelerate table or database
lookup by detecting duplicated records in a
large file. They are also useful
in cryptography. A cryptographic hash
function allows one to easily verify that some
input data matches a stored hash value, but
makes it hard to reconstruct the data from
the hash alone. When storing records in a
large unsorted file, one may use a hash
function to map each record to an index into a
table T, and collect in each bucket T[i] a list of
the numbers of all records with the same hash
value i. Once the table is complete, any two

duplicate records will end up in the same
bucket. Duplicates can then be found by
scanning every bucket T[i] which contains two
or more members, fetching those records,
and comparing them. With a table of
appropriate size, this method is likely to be
much faster than any alternative approach.A
good hash function should map the expected
inputs as evenly as possible over its output
range. That is, every hash value in the output
range should be generated with roughly the
same probability. The reason for this
requirement is the cost of hashing-based
methods goes up sharply as the number
of collisions pairs of inputs that are mapped
to the same hash value increases. Basically, if
some hash values are more likely to occur
than others, a larger fraction of the lookup
operations will have to search through a
larger set of colliding table entries. A hash
function that is used to search for similar data
must be as continuous as possible; two inputs
that differ by a little should be mapped to
equal or nearly equal hash values.

http://en.wikipedia.org/wiki/Function
http://en.wikipedia.org/wiki/Data_(computing)
http://en.wikipedia.org/wiki/Hash_table
http://en.wikipedia.org/wiki/Cryptography
http://en.wikipedia.org/wiki/Cryptographic_hash_function
http://en.wikipedia.org/wiki/Cryptographic_hash_function
http://en.wikipedia.org/wiki/Cryptographic_hash_function
http://en.wikipedia.org/wiki/List_(computing)
http://en.wikipedia.org/wiki/Probability
http://en.wikipedia.org/wiki/Continuous_function

 International Journal of advanced studies in Computer Science and Engineering
IJASCSE, Volume 4, Issue 1, 2015

www.ijascse.org Page 19

Jan. 31

Related Work
Files of similar type are taken to find
similarity among them. Comparison of
files is done based on the parameters like
file size, storage occupied by it and
contents of file. If files are same based on
parameters, then it will be termed as
deduplicated. Storage services commonly
use deduplication, which eliminates
redundant data by storing only a single
copy of each file or block. Deduplication
reduces the space and bandwidth
requirements of data storage services,
and is most effective when applied across
multiple users, a common practice by
storage offerings. It implies the privacy
implications of cross-user deduplication. It
demonstrates how deduplication can be
used as a side channel which reveals
information about the contents of files of
other users. In a different scenario,
deduplication can be used as a covert
channel by which malicious software can
communicate with its control center,
regardless of any firewall settings at the
attacked machine. Due to the high savings
offered by cross-user deduplication,
storage providers are unlikely to stop
using this technology. Therefore,
proposed simple mechanisms that enable
cross-user deduplication while greatly
reducing the risk of data leakage.

The fast growth of data volumes leads to
an increased demand for online storage
services, ranging from simple backup
services to storage infrastructures.
Remote backup services give users an
online system for collecting, compressing,
encrypting, and transferring data to a
backup server that is provided by the
hosting company.
Storage refers to scalable and elastic
storage capabilities that are delivered as a
service using Internet technologies with
elastic provisioning that does not penalize

users for changing their storage
consumption without notice. The term
data deduplication refers to techniques
that store only a single copy of redundant
data, and provide links to that copy
instead of storing other actual copies of
this data. With the transition of services
from tape to disk, data deduplication has
become a key component in the backup
process. By storing and transmitting only a
single copy of duplicate data,
deduplication offers savings of both disk
space and network bandwidth.
 For vendors, it offers secondary
cost savings in power and cooling
achieved by reducing the number of disk
spindles. According to recent statistics,
deduplication is considered to be the
most-impactful storage technology and it.
Initially, files of same type have been
taken to be compared. Hash values are
computed for those values based on MD5
algorithm in existing system and SHA-3
algorithm in proposed system. file
detection systems is to provide useful
information to users. The key idea of this
system is to monitor file I/O periodically
and check similar files in the storage
system. Adapt similar hashing algorithm
to check similarity between files on the
storage system. First, focus on efficient
hash algorithm which gives good
performance without incurring heavy CPU
processing and I/O requests. Second,
interest in minimizing disk space by
recommend similar files including
duplicated files.
Computer system deals with lots of files to
support various applications. As
multimedia services are increasing,
storage systems have to store large size
data files including movie, virtual machine
image, and CD image files. Many
operating systems recently support
deduplication-based file system to
minimize disk storage capacity. However,
this approach usually incurs heavy system

 International Journal of advanced studies in Computer Science and Engineering
IJASCSE, Volume 4, Issue 1, 2015

www.ijascse.org Page 20

Jan. 31

overhead. Another alternative method is
to use a specific file manager application
that supports elimination of duplicated
files. However this approach also has
difficulties from performance overhead.

Proposed Work
SHA-3 uses the sponge construction in which
message blocks are XORed into a subset of
the state, which is then transformed as a
whole. Input files of similar type are gives as
input for SHA-3 algorithm computation.
Initially the state is assigned with zero.
Padding is performed i.e. appending bits.
Absorb the input into the state; that is, for
each piece, XOR it into the state and then
block permutation is applied.
 The hash value for a given file is
computed at a same rate as input. Then hash
values of two files are compared to detect the
duplication. If the hash values of similar type
of files that had been taken are true, then one
of the duplicate file is removed. Otherwise, it
returns false.
 SHA-3 can produce the hash values in
desperate kind of bits like 224 bits, 256 bits,
384 bits and 512 bits. It computes hash values
with XOR operation that takes 24 rounds. It is
more anticipated more compared with MD-5
and SHA-1 algorithms.
 SHA-3 has extendable output
functions which is not likely in MD-5 and SHA-
1 as well. The eloquent algorithm for
computing hashes for a given output is SHA-3
to remove redundancy efficiently.

 Figure3.1 :SHA-3 Hashing on a File

System Modules
4.1 Evaluating file properties
Initially the files that are taken as input is
compared by parameters like size,
memory occupied on the disk by each files
and content of both files. If both files are
same under these parameters, then it is
loaded into the buffer to detect the
similarity between the files and one of the
files is removed by its hash values.
4.2 Generating hash values based on SHA-
3

 Hash values for files are
manipulated under sponge construction
which is defined by NIST. Padding of file is
performed that is single 1 bit appended to
the file followed by many zeros and length

is appended. Buffer is initialized to load
the hexadecimal values of files.

4.3 File comparison
 Hash values of various bits are
obtained under SHA-3 algorithm. If hashes
of two files are same, then it shows that
same kind of file is copied at many places
in an environment. Files are selected for
comparison in Android Environment. One
of the files is removed. Before produce
the hash value, it checks content of file
with another file. Hash value based on file
content, is spawned.
4.4 Executing in android platform
 Redundancy file comparison based
on SHA-3 algorithm is implemented in
android mobile environment. It checks the
files of any type that are stored in phone
memory and external storage as well. If it
is phone memory, it requires a super user
permission to detect and remove the files.
Hash values of similar files like .txt, .jpeg,
.avi is computed. It is removed if the hash
values are same for the both files.

Result and discussion

Input File

State Initialization as 0

Padding

Absorbed Input state at Given
Rate

Block Permutation

Hash Value for a file that is squeezed at same
rate

http://en.wikipedia.org/wiki/Sponge_function
http://en.wikipedia.org/wiki/Exclusive_or

 International Journal of advanced studies in Computer Science and Engineering
IJASCSE, Volume 4, Issue 1, 2015

www.ijascse.org Page 21

Jan. 31

The results are shown that memory
consumption of files that are compared to
remove the redundancy based on MD5
and SHA-3 hashes. Figure illustrates that
size of files (as 5KB, 10 KB , ...) are taken
and how it consumes storage on memory.
Result of SHA-3 memory consumption is
better than MD5. Memory occupied by
MD5 is larger than SHA-3 algorithm. Thus
SHA-3 greatly reduces the redundancy
based on disk storage.

 Figure 5.1: Comparison of md5 and
SHA-3 based on memory consumption
 The results are shown that time
taken to compare and compute hash
values for files to be taken based on MD5
and SHA-3 algorithm. Figure illustrates
that files are of size (as 5KB, 10KB, 15KB,
..) taken and how much time it takes to
compute hash value for files of various
size. Time taken for SHA-3 algorithm to
compute hash value is much lesser than
MD5 algorithm. Thus SHA-3 algorithm

removes similar files base on hash value
with less time on mobile environment.

Figure5.2 : Comparison of md5 and sha-3
based on time
Conclusion
The file systems built into modern
Operating Systems do not provide
adequate support for managing file
duplication. File duplication can be
identified in detail with initial comparison
of files, followed by MD5 algorithm in
earlier and by SHA-3 algorithm in later.
Based on MD5 and SHA-3, hash values for
files have been generated. One of the
redundant files is removed, if hash values
of similar type files are same. The time
taken to compute hash value by SHA-3 is
much lesser than MD5. MD5 consumes
more memory than SHA-3 algorithm. The
performance of MD5 hash function is
severely compromised in terms of
memory consumption and time compared
with SHA-3 algorithm. SHA-3 helps in
retrieving valuable disk space and in
improving the efficiency. SHA-3 is the best
in identifying the redundant files in a
mobile environment. The final SHA-3

0

2000

4000

6000

8000

10000

12000

5 15 25 35 45 55 65 75 85 95

Comparison of MD5 and SHA3

based on Memory Consumption

(KB)

MD5 (KB) SHA3 (KB)

0 10000 20000 30000

5

15

25

35

45

55

65

75

85

95

Comparison of MD5 and

SHA3 based on Time

Consumption

SHA3 (Seconds) MD5 (Seconds)

 International Journal of advanced studies in Computer Science and Engineering
IJASCSE, Volume 4, Issue 1, 2015

www.ijascse.org Page 22

Jan. 31

candidates show much promise in terms
of performance. SHA-3 hashing algorithm
incorporated into an environment for
detecting the redundant files and for
removing it in mobile platform.

References

1. AL-Marakeby (2013) ‘Analysis of
MD5 Algorithm Safety against
Hardware Implementation of
Brute Force Attack’, International
Journal of Advanced Research in
Computer and Communication
Engineering Vol. 2, Issue 9
pp.3332–3335.

2. Alia Arshad, Dur-e-Shahwarkundi

and Arshad Aziz (2014), ‘Compact
Implementation of SHA3-512 on
FPGA’, Conference on Information
Assurance and Cyber Security
(CIACS).

3. Amar Jaffar and Christopher J.

Martinez (2013), ‘Detail Power
Analysis of the SHA-3 Hashing
Algorithm Candidates on Xilinx
Spartan-3E’,International Journal
of Computer and Electrical
Engineering, Vol. 5, No. 4 pp.410-
413.

4. Danny Harnik, Benny Pinkas and

Alexandra Shulman-Peleg (2010),
‘Side channels in cloud services,
the case of deduplication in cloud
storage’, pp. 1-7.

5. Dutch T. Meyer and William J.

Bolosky (2012), ‘A Study of
Practical Deduplication’, USENIX
Association Berkeley, CA, USA
©2011, ISBN: 978-1-931971-82-9,
pp.1-1.

6. FatmaKahri, BelgacemBouallegue,

Mohsen Machhout and RachedTourki
(2013), ‘An FPGA implementation of

the SHA-3: The BLAKE Hash Function’,
10th International Multi-Conference
on Systems, Signals & Devices (SSD)
pp.1-5.

7. JaspreetKaur and Jasmeet Singh
(2013), ‘Survey on Efficient Audit
Service to Ensure Data Integrity in
Cloud Environment’,Global Journal of
Computer Science and Technology
Software & Data Engineering, Volume
13 Issue 4 Version 1.0 pp.43-46.

8. Jin Kim, Sun-Jung Kim, and Young

WoongKo (2014), ‘Design and
Implementation of File Monitoring
Tools for Detecting Similar Files’, 3rd
International Conference on
Computational Techniques and
Artificial Intelligence pp.79-82.

9. KamleshkumarRaghuvanshi,
PurnimaKhurana and
PurnimaBindal (2014), ‘Study and
Comparative Analysis of Different
Hash Algorithm’,Journal of
Engineering Computers & Applied
Sciences (JECAS) ISSN No: 2319-
5606 Volume 3, No.9 pp.1-3.

10. Mooseop Kim, DeokGyu Lee and

JaecheolRyou (2013), ‘Compact
and unified hardware architecture
for SHA-1and SHA-256 of trusted
mobile computing’, PersUbiquit
Comput-2013 DOI
10.1007/s00779-012-0543-0 pp.
921–932.

11. Penny Pritzker and Patrick D.
Gallagher (2014), ‘SHA-3 Standard:
Permutation-Based Hash and
Extendable-Output Functions’,
Information Tech Laboratory
National Institute of Standards and
Technology pp.1-35.

 International Journal of advanced studies in Computer Science and Engineering
IJASCSE, Volume 4, Issue 1, 2015

www.ijascse.org Page 23

Jan. 31

12. Ram Krishna Dahal, JagdishBhatta
and Tanka Nathhamala (2013),
‘Performance Analysis of SHA-2
And SHA-3finalists’, International
Journal on Cryptography and
Information Security (IJCIS), Vol.3,

13. Ruey-Kai Sheu, Shyan-Ming Yuan,

Win-Tsung Lo and Chan-I
Ku(2014)‘Design and
Implementation of File
Deduplication Framework on

HDFS’, International Journal of
Sensor Networks, Article ID
561340 pp.520-532.

14. ThulasimaniLakshmanan and

MadheswaranMuthusamy (2012),
‘A Novel Secure Hash Algorithm
for Public Key Digital Signature
Schemes’, The International
Journal of Information Technology,
Vol. 9, No. 3 pp.262-267.

