
International Journal of advanced studies in Computer Science and Engineering
IJASCSE Volume 4, Issue 8, 2015

www.ijascse.org Page 14

Aug. 31

Multitasking Programming of OBDH Satellite

Based On PC-104
Haryono

Indonesian National Institute of Aeronautics and Space (LAPAN)

Jl. Cagak Satelit KM.04 Rancabungur – Bogor 16310

Abstract— On Board Data Handling (OBDH) has

functions to monitor, control, acquire, analyze, take a

decision, and execute the command. OBDH should

organize the task between sub system. OBDH like a

heart which has a vital function. Because the function is

seriously important therefore designing and

implementing the OBDH should be carefully, in order to

have a good reliability. Many OBDHs have been made to

support the satellite mission using primitive

programming. In handling the data from various input,

OBDH should always be available to all sub systems,

when the tasks are many, it is not easy to program using

primitive programming. Sometimes the data become

corrupt because the data which come to the OBDH is in

the same time. Therefore it is required to have a way to

handle the data safely and also easy in programming

perspective.

 In this research, OBDH is programmed using

multi tasking programming perspective has been

created. The Operating System (OS) has been

implemented so that can run the tasks simultaneously.

The OS is prepared by configuring the Linux Kernel for

the specific processor, creating Root File System (RFS),

installing the BusyBox. In order to do the above method,

preparing the environment in our machine has been

done, they are installing the Cross Tool Chain, U-Boot,

GNU-Linux Kernel Source etc. After that, programming

using c code with multitasking programming can be

implemented.

 By using above method, it is found that

programming is easier and the corruption data because

of reentrancy can be minimized.

Keywords- Operating System, PC-104, Kernel, C

Programming

I. INTRODUCTION

 National Institute of Aeronautics and Space

(LAPAN) - Satellite Technology Center has main task to

research and develop the satellite technology. One of the

research is developing the On Board Data Handling

(OBDH). OBDH which was developed for LAPAN satellites

using primitive programming [1]. It is not easy to handle

many input data when the data which have to be handled is

more [2]. It is possible to be corrupted when the OBDH need

to handle the data from many sub systems which come in the

same time.

 In the future LAPAN will create small satellite [3],

many tasks will need to be handled by the OBDH. Therefore

in order to support those requirement, new programming

development need to be implemented. Primitive

programming cannot handle the task simultaneously, unlike

primitive programming, Real Time Operating System

(RTOS) can handle multi tasks in parallel manner [4].

Primitive programming works based on interruption, when

interruption is occurred in the same time, it is possible the

data become corrupt or cut. In primitive programming, to

minimize the data corruption we need to handle the task as

fast as possible, if some tasks require a lot of computation, it

is not easy to achieve that. In term of programming

perspective it is not easy to program many tasks because the

code is executed in sequent manner.

 To handle the above problem, multi tasking

programming has been implemented. By using multi tasking

programming it is easy to program each task accordingly. In

this research has main objective to develop the OBDH in the

form of multi tasking programming. So that concept

operation and mission can be fulfill by the OBDH easily.

International Journal of advanced studies in Computer Science and Engineering
IJASCSE Volume 4, Issue 8, 2015

www.ijascse.org Page 15

Aug. 31

II. METHODS

II.1. Methodology

 Figure 1 is the methodology to achieve the aim of

this research. Below is the step of the research activities

which have been done:

1. Requirement Analysis: All the requirement of the

system in the phase will be defined.

2. System Design: Define the hardware and software

specification, including the specification of the

hardware which has space qualification and

programming method for OBDH.

3. Implementation: Preparing the environment and

programming the OBDH as the requirement.

4. Integration and Testing: Integrate the system and

create unit test each task, and the qualification test.

5. Analysis: Analysis the result and compare with other

research that have been done.

Requirement

Analysis

System Design

Implementation

Integration &

Testing

Analysis

Figure 1. Methodology

II.2. Requirement Analysis

 In this phase will be described the satellite

requirement to the OBDH. In the starting point, the OBDH

will handle the Wheel Drive Electronics (WDE), Star

Sensor (STS) and other sub systems. WDE will be 4 items,

each should be handled simultaneously and STS will be 1

item. Wheel Drive Electronics (WDE) has TTL protocol and

STS is RS422 protocol. The OBDH should also save the

STS data to the memory safely. All tasks should be run in

multitasking perspective.

II.3. System Design Of On Board Data Handling

(OBDH)

 Hardware Design: in order to make fast in the

development, PC-104 has been selected, because of its

known heritage design in space application [5] [6] [7] [8].

PC-104 board which is selected should be space qualified.

Main board of the OBDH is MPL-MIP405-3, in this board

our operating system is run and our programmed is

implemented.

 Software Design: the software which is designed

using Operating System (OS), by using OS it easy to

implement the multi tasking programming. Below are the

advantages when using multi tasking programming:

1. Each task can run simultaneously [9].

2. Interruption will not disturb the task which is run.

3. From programming perspective is more easy to

classify the task. In the line code execution is not done

in sequential manner but parallel.

II.4. Proposed Research

 To make a better explanation of Proposed research,

a schematic diagram is shown in the figure 2. The research

International Journal of advanced studies in Computer Science and Engineering
IJASCSE Volume 4, Issue 8, 2015

www.ijascse.org Page 16

Aug. 31

focus is to implement the multitasking programming and to

prove that multitasking programming has many advantages

over the primitive programming.

In order to support the OS to be working, board selection

was done. Many Operating system that is available in the

market, from free until paid OS, this work part need to be

considered according to the resources and the budget. After

OS has been chosen, developing the OS and implementing

to the board. Then the application need to be programming

by using C Programming. Analysis and Result is important

part, to see the result and to conclude about the finding

whether successfully or not.

Figure 2 Schematic diagram of proposed research.

III. IMPLEMENTATION

 In order to implement the objective, two kind

environment need to be prepared. Those two kinds are

described below:

1. Development Host Environment:

a. Linux Operating system (Fedora)

b. Eclipse Development Tool

c. TFTP, SCP and SSH

d. Installation of Cross tool chain, U-Boot, Busybox,

Linux Kernel modules, Creating and populating RFS,

install SCP, GDB Server, OSCI driver etc.

e. Create the image disk for the target device.

f. The hardest part to provide the environment above is to

prepare at the fourth step, it is required to

prepare/install all the requirements before we prepare

for the fourth step.

2. Target Environment:

 MPL MIP405 is used to run the image which has

been created from the host environment. It has 400 MHz

processor and 8 MB flash memory [10].

III.1. Programming Environment

 In order to program the target, it is needed to

prepare the environment, starting in creating the executable

file until making the debugging. Executable file is built

from gcc compiler. Linux Kernel is used as the operating

system for the target device; hence the executable file

should able to be run in Linux operating system

environment.

 MPL MIP405 is an IBM computer, Power PC as

the core of the chip. In creating the executable, compiling

the code should complain with the Power PC 405 (PPC405)

otherwise the executable file will not run in the target

device. In order to compile the code to executable file for

PPC405, Installation of Cross tool chain in development

tool is necessary. In this research Fedora Linux is selected to

host the compiler for the PPC405. After preparing the

compiler, the next step is to prepare the debugging

environment. There are many ways to do this debugging, in

term of communication and software that is used.

Communication which is used when debugging is done in

the Development Host computer most uses TCP/IP, Serial

Port can be done but relatively slow. If the target device is

complete device and has a good spec computer, developing

in the target device directly is advice.

But when the target device is very minimum device then

creating Development Host is needed. In this scenario

second method is chosen. Figure 3. is a scenario to develop

the target device.

Board Selection To

Support OS

OS Selection

Developing and
Implementation the

OS

Programming the

Application and

Testing

Analysis and Result

International Journal of advanced studies in Computer Science and Engineering
IJASCSE Volume 4, Issue 8, 2015

www.ijascse.org Page 17

Aug. 31

Figure 3. Scenario to develop the target device

 Code is written in the Development Host Computer

(DHC) via Eclipse IDE. Eclipse IDE with the Cross

Compiler will work together to create the executable file.

After executable file is created, it is needed to transfer via

TCP/IP trough SCP. SCP is having task to transfer the file

manually from DHC to target device. After the file is

transferred to the target device, it is ready to run the file via

GDB Server. In order to enable the debugging process, run

the file via GDB server is required. In the eclipse IDE

configuration to enable the debugging process was done.

The parameter configuration is about the TCP/IP of the

target device where the GDB Server is take place and

location file of the executable in the target device. Before

that installation of GDB server and Dropbear in target

device are required. GDB server will execute the executable

in target device, whereas the Dropbear will handle the

communication with the DHC. Debugging communication

is using SSH. Because the target device is limited resource

to replace the OpenSSH, Dropbear is selected. Dropbear is

simple and compact to support communication via SSH,

versatile for the embedded device, small SSH server and

client [11]. After those step have been prepared, debugging

of the device over eclipse IDE via SSH can be done.

Note: When target device is not installed the OpenSSH, it is

not possible to transfer the file directly via Eclipse. There is

configuration in eclipse to disable the automatic transfer.

Disable the automatic transfer is required, otherwise error

will be show up and break up the process.

III.2. Preparing the Kernel Linux OS

 Many operating systems can run in the MPL405

from free OS to License OS. The license OS like QNX or

WindRiver is relatively expansive. It costs around $ 134000.

In compensation of cost, it has a lot of resource to program

the device, easy to prepare the debugging environment and

have fast boot up. Because in our institution has limitation

budget free OS is chosen. We don't use any distribution of

Linux, but creating the image OS via kernel is done. The

advantage using kernel Linux directly can minimized the

image file as minimum as possible according to the need of

the requirement and has ability to configure the OS as

needed.

 The step to create the Image OS for the target

device is below:

[1] Download the zip file of the kernel

[2] Install the Cross Compiler for the PPC405

[3] Configure the Kernel

[4] Install the Kernel

[5] Install Busy box

[6] Create the Root File System (RFS)

[7] Extract the Kernel and Busy box to RFS

[8] Convert the RFS + Kernel to the image file system

[9] Burn the image file system to the target device

The image file system is binary file that can be copied to the

non volatile memory in MPL405 via u-boot. U-Boot is open

source, it has task to boot up the MPL405 device. After the

device is boot up, the image file can be copied to the device

via Serial port or LAN.

III.3. Starting the Development Environment

1st Step, Preparing On the Target:

 After OS image has been created and copied to the

target flash, the target is ready to be run. bootm is the boot

command to run the OS image that was copied. The prompt

will show up, need to login as root with appropriate

TARGET

DEVICE

DEVELOPMENT

HOST

COMPUTER TCP/IP

Programs Required:

1. Kernel Linux OS

2. GDB Server

3. SCP Client

4. Dropbear

Programs Required:

1. Fedora OS

2. GDB

3. OpenSSH

4. Eclipse

5. Cross compiler

6. SCP

International Journal of advanced studies in Computer Science and Engineering
IJASCSE Volume 4, Issue 8, 2015

www.ijascse.org Page 18

Aug. 31

password. Serial Port and Local Area Network should be

connected to the development PC.

2nd Step, Preparing On the Development PC:

 In normal PC there is monitor it can be essay to

command the Linux Box and see the result, but for MPL405

there is no VGA card to show the console window to the

screen. So that serial communication to communicate

between the target and the development PC is used.

Hyperterminal and appropriate setting has been applied.

Serial communication setting is 9600 8 N 1. Figure 4 is

about the command to the target in order to start the

environment development. Before to start the dropbear,

dropbear has been installed to the OS. dropbear task is like

SSH, the main task of dropbear is copying the executable

program from development PC to the target machine.

modprobe mpl_osci.ko is command to start up the driver for

the serial communication board (extended PC-104 Board).

It has 8 ports each board, can be operated as RS232 or RS

422 or TTL. The next command is about the setting for the

port to be RS 422/RS232/TTL.

Figure 4. Command to start the development environment in

the target

3th Step: In this step will be discussed about the

programming and debugging of the target using Eclipse.

Below is the step:

- Start Fedora 21: Many Distros have been tried to create

the development PC, but end up with some failing in the

installation. When come to Fedora 21 development PC can

be prepared smoothly.

- Run Eclipse: By using eclipse debugging is more easy

and free software. Eclipse acts as integrated development

environment. C programming is selected to program the

target.

- Preparing the Executable File in the target: To get

executable file, C code that has been write up can be

compiled. The compiler that has been used is Crosstool NG.

Crosstool NG at here acts to compile the code to the

MPL405, it is using PPC 405 processor. Crosstool NG has

been installed successfully in Fedora 21 for PPC 405

processor.

By pressing the Ctrl + B get the executable file for the

target. Executable file is sent via Dropbear using command:

scp exc1 root@192.168.137.2:/home, means copy the exc1

file to the target device with IP Address 192.168.137.2 in

home directory. Need to make sure the ssh communication

between target and development PC is established.

IV. RESULTS AND ANALYSIS

IV.1. Testing the software

 In this topic will discuss about the testing of the

OBDH based on multitasking. After everything is done in
implementation the next test is to verify whether the OS and

the software that is burn in to the PC-104 is working

properly.

The test is done by two categories:

1. To know whether OS work and all tasks can run

multitasking.

2. To know each task is working properly as assigned.

 Category one, to know whether OS work and all

tasks can run multitasking, in figure 5 is shown to describe
that OS have run smoothly. It is shown that Linux OS is run

and gave us a prompt and ready to be commanded. Each

task is executed, one it is executed will run and ready to

receive the data input from Receiver port (Rx).

mkdir /etc/dropbear

cd /etc/dropbear

dropbearkey -t dss -f dropbear_dss_host_key

dropbearkey -t rsa -f dropbear_rsa_host_key

dropbear -s -g

modprobe mpl_osci.ko

/mnt/hda1/set_osci_hryn /dev/ttyOS0 -r 4 -f 1

/mnt/hda1/set_osci_hryn /dev/ttyOS1 -r 4 -f 1

/mnt/hda1/set_osci_hryn /dev/ttyOS2 -r 4 -f 1
/mnt/hda1/set_osci_hryn /dev/ttyOS4 -r 4 -f 1

/mnt/hda1/set_osci_hryn /dev/ttyOS6 -r 4 -f 1

International Journal of advanced studies in Computer Science and Engineering
IJASCSE Volume 4, Issue 8, 2015

www.ijascse.org Page 19

Aug. 31

Figure 5. Linux OS has run and executed each task

 Category two, to know each task is working

properly as assigned, in figure 6 showed that the software

has been tested by commanding the OS to get the Wheel

Drive Electronic (WDE) data. The OBDH reply back and

give the WDE data correctly, the data is showed in Receive

Data column with 32 byte data. The testing to the sub

system has been done and applied to all sub systems as

shown in Table 1 and the result was getting the correctly
data. All communication to sub system is done in

multitasking perspective.

Device ID Name

1 WDE 1

2 WDE 2

3 WDE 3

4 Start Sensor (STS) 1

5 Start Sensor (STS) 2

6 BATREY (Simulation)

7 GPS (Simulation)

Table 1. Sub systems that have been connected and tested to

communicate with the OBDH

Figure 6. Command to OBDH to get System Telemetry

from WDE

IV.2. Multi Tasking Programming perspective

 In this topic will discuss about differences

programming perspective between primitive programming

and multi tasking programming. In Figure 7 (primitive

programming) and Figure 8 (multi tasking programming)

are a C programming that have been implemented in the

microcontroller and microprocessor.

Figure 7. Primitive programming

Each task is running
and ready to receive

the data from Rx Port

to be processed

main ()

{

 TaskRxMainBoard2();

 TaskRxMainBoard3();

 TaskRxOsci0();

 TaskRxOsci2();

 TaskRxOsci4();

}

International Journal of advanced studies in Computer Science and Engineering
IJASCSE Volume 4, Issue 8, 2015

www.ijascse.org Page 20

Aug. 31

Figure 8. Multi tasking programming

 In Figure 7. the code is executed sequence, it is not

easy to fulfill the requirement of the concept operation. It

can be solved by the interruption technique but when

requirement is more complex, sometime the task that is

running can be interrupted by interruption immediately.

When using multitasking in Figure 8, it can be seen that

programming is more easy. Each of task run simultaneously,

task can be sleep, suspended or run according to the need.

Without any dependency to other tasks, when the task is

completed in their process.

IV.3. Non Reentrancy Function

 In primitive method, it is possible to get corrupt

data because neglecting the non Reentrancy function. As

figured in the figure 9, it showed that the data being

corrupted because in the same time using same non

Reentrancy function, the process is interrupted while

sending the data. As shown in the figure 9, stream data of

lowercase alphabet is cut by uppercase alphabet.

Figure 9. Primitive method faces the corrupt data [12].

IV.4. Portable Operating System Interface (POSIX)

standard

 Embedding Linux OS in the target device will have

ability in using the standard POSIX coding. A lot of

resources or libraries that can be used to create a code based

on POSIX standard. Because of that the code that has been

created can be more adaptable and easier to be created.

IV. CONCLUSION AND FUTURE WORK

 The conclusion that can be obtained is by using

Multi Tasking Programming perspective, it is found that

programming is easier and the corruption data because of

reentrancy can be minimized.

 The next research will implement this PC-104

board with operating system for On Board Data Handling

sub system of LAPAN Satellites. It will be further analyzed

in to the real application of On Board Data Handling.

ACKNOWLEDGMENT

This project is supported by Satellite Centre - LAPAN,

Mr Abdul Karim as Head of Bus Satellite LAPAN, Mr

Suhermanto as Head of Satellite Center LAPAN and my

colleges Mr Fauzi and Mr Taufik. We would like to

acknowledge for their support in this project.

void* TaskRxMainBoard2(void *arg)

{

 // Task code

}
void* TaskRxMainBoard3(void *arg)

{

 // Task code

}

void* TaskRxOsci0(void *arg)

{

 // Task code

}
void* TaskRxOsci2(void *arg)

{

 // Task code

}
void* TaskRxOsci4(void *arg)

{

 // Task code

}

International Journal of advanced studies in Computer Science and Engineering
IJASCSE Volume 4, Issue 8, 2015

www.ijascse.org Page 21

Aug. 31

REFERENCES

[1] A. Karim, “DESIGN SIMULATOR FOR THE

DEVELOPMENT OF SATELLITE OBDH, CASE STUDY
OF LAPAN-TUBSAT,” Bandung Technology Institute,
Bandung, 2010.

[2] Pumpkin, “Salvo User Manual.” 2010.

[3] LAPAN, “Satellite Development RoadMap,” 03-Aug-2015.
[Online]. Available:
http://www.tekgan.lapan.go.id/index.php/roadmap.

[4] W. Cedeño and P. A. Laplante, “An Overview of Real-Time
Operating Systems,” J. Lab. Autom., vol. 12, no. 1, pp. 40–
45, 2006.

[5] M. A. Elektronikunternehmen, “400MHz CPU board passes
radiation testing for Space Station,” 2015. [Online].

Available: http://www.mpl.ch/news22.html. [Accessed: 03-
Aug-2015].

[6] S. T. Crites, P. G. Lucey, R. Wright, J. Chan, H. Garbeil, K.
A. Horton, A. Imai, M. Wood, and L. Yoneshige, “SUCHI:
The Space Ultra-Compact Hyperspectral Imager for small
satellites,” 2013, p. 873902.

[7] B. King, P. Hohnstadt, and T. Venturino, “A Nanosatellites
for space situtional awareness.” 2015.

[8] T. Sorensen, L. French, W. Doi, J. Chan, E. Gregory, M.
Kobyashi, Z. Lee-Ho, M. Nunes, E. Pilger, A. Yamura, and
L. Yoneshige, “Hawai’iSat-1: Development Of A University

Microsatellite For Testing a Thermal Hyperspectral Imager,”
2010.

[9] M. McCarthy, “What Is Multi-Threading,” 01-Feb-1997.
[Online]. Available:
http://www.linuxjournal.com/article/1363. [Accessed: 03-
Aug-2015].

[10] MPL, “Rugged PC/104-Plus PowerPC board for embedded
applications (MIP405),” 2015. [Online]. Available:

http://www.mpl.ch/t2720.html. [Accessed: 03-Aug-2015].
[11] M. Johnston, “Dropbear SSH.” [Online]. Available:

https://matt.ucc.asn.au/dropbear/dropbear.html. [Accessed:
03-Aug-2015].

[12] Haryono, A. E. Putra, J. E. Istiyanto, and A. Harjoko, “Error
Detection and Correction System (EDAC) of On Board Data
Handling (OBDH) in Real Time Operating System
Behaviour,” Sci. Res. J. Univ. Teknol. Mara UiTM Malays.,

vol. 10, no. 2.

