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Abstract— Graph Isomorphism is a widely studied problem 

due to its practical applications in various fields of networks, 

chemistry and finger print detection, recent problems in biology 

such as diabetes detection, protein structure and information 

retrieval. An approach to the graph isomorphism detection is 

based on vertex invariant. In the existing approach vertex 

invariants is used to partition the matrix of input graph for 

reducing size of decision tree to detect graph isomorphism. In 

this approach the graph isomorphism detection is carried out by 

comparing the entire adjacency matrix of input graph with the 

model graph. Element by element comparisons requires more 

time to detect graph isomorphism. In this paper we present 

graph isomorphism detection algorithm based on vertex 

invariant and Euclidean vector. We evaluate the proposed 

algorithm on the various randomly generated directed and 

undirected graphs by computing the Euclidean vector of input 

graph adjacency matrix and model graph to make comparison 

with existing algorithm. Experimental result shows that 

computational time complexity is reduced remarkably as 
compared to the existing sequential algorithm.  

Keywords—Graph Isomorphism, Vertex Invariants, Eucledian 
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I.  INTRODUCTION  

Graphs are widely used in real life applications to represent 
the structure of objects, e.g. applications like molecules, 
images, networks Graph isomorphism is a way of matching the 
two graphs whether they are equivalent or not. There is 
complete structural equivalence between two graph and differs 
only in the names of vertices and edges. Graph Isomorphism is 
a way of one to one mapping of vertices and edges of two 
graphs. Graph isomorphism is highly studied problem in 
research field and graph theory. Graph isomorphism problem is 
extensively applied in many applications in various fields such 
as data mining [1], pattern recognition [2], information 
retrieval [3], chemistry [4].Most researchers believe that GI 
problem is not NP-complete. As there is no polynomial 
solution for GI it is not known to be in P nor to be NP- 
complete. 

 Graph matching can be done in two ways. Given two 
graphs, checking whether two graphs are isomorphic or one 
graph is a subgraph, of the other graph. In second method, an 
input graph is matched with graphs present in a given database  
called model graph .If an input graph entire structure  is 
matched with model graph then two graphs are said to be 
isomorphic and if substructure of a graph is matched it is said 

to be subgraph isomorphic. In [5] graph isomorphism detection 
is based on decision tree approach based on the methodology 
proposed by[6].The existing algorithm uses the vertex invariant 
property to reduce the search space but the time complexity is 
same as[6].Vertex invariants[7] are the attributes assigned to 
the vertex which do not change after performing graph 
isomorphism. The attributes such as label of vertex, label of 
edge, degree of vertex are known as vertex invariants. By 
applying vertex invariants property we can change the position 
of vertices within the same group not from different group. In 
the existing algorithm, the adjacency matrix of the model graph 
and input graph are compared for testing isomorphism .In our 
approach we applied the Euclidean norm on adjacency matrix 
and compared the Euclidean vector of the input graph against 
the model graph matrix which reduces the time complexity as 
compared to existing algorithm[5]. 

In this paper section II describes the basic definitions and 
notations. Section III describes the basic idea of the algorithm. 
In section IV modified algorithm is described. In Section V 
experimental results were given. Section VI specifies the 
conclusion. 

  

II. BASIC DEFINITION 

A. Definition1: 

In[8],the graph isomorphism is expressed as : Given two 
graphs G1=(V1,E1) and G2=(V2,E2) ,if there exist 1 to 1 
mapping function f from v1 to v2 such that ( i , j) ∈  E1, if and 
only if (f(i) ,f(j)) ∈  E2. The function f is called an isomorphism 
from G1 to G2 .If the two graphs isomorphic to each other, it is 
denoted by G1 ≅ G2. 

B. Definition2:  

The identity matrix M of order n x n is represented as  

                   

                  mij =   1, if  i = j  
               0 otherwise       (1) 
 

Where m, is an element of M on the ith row and jth column 

C. Definition3:  

A permutation matrix is obtained from the identity matrix 
by any row and column permutation. If  M1 and M2 are the two 
matrices of graph G1 and G2 respectively M1 is said to be  
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isomorphic to M2 if there exists 1 to 1 mapping of function f  

.from the rows of  M1 to rows of  M2.and from column of  M1 to 
column of M2. The function f is called an isomorphism from M1 
to M2. In other words, M1 is isomorphic to M2 if and only if 
there exists the permutation matrices P1 and P2 satisfying the 
following relation  

                       M1= P1 M2 P2                     (2) 

III. EXISTING ALGORITHM 

In [5], vertex invariant and decision tree concept is used to 
test graph isomorphism. The vertex invariants are used to 
partition the matrix of the graph before graph isomorphism 
detection. By using vertex invariant property of graph, the size 
of decision tree is reduced as compared to [6]. The technique 
is similar to breadth pruning technique which reduces the size 
of decision tree remarkably still the time complexity is almost 
equivalent. 

Decision tree is the most and simple method for 
knowledge representation. The basic idea [6] of the 
isomorphism algorithm is that all possible permutation of 
adjacency matrix of each of the model graph was computed 
offline and the permutation matrices were represented as 
decision tree. The matrix of input graph is matched to those of 
adjacency matrices in the decision tree which are identical to 
it. At run time, the permutation matrices correspond to these 
adjacency matrices represent the graph or subgraph 
isomorphism. 

 
By using the row-column element of each permutation 

matrix we can recognize the model graph into decision tree. A 
row-column element xi of n x n matrix is a vector and is 
represented as xi = (y1i, y2i… yii, yi (i-1)…... yi1). The 
representation of an adjacency matrix A by its row –column 
element is illustrated in figure 1. The x1, x2---- are the row 
column element of matrix x. A root node is present at the top 
of decision tree. At each level of the decision tree the 
classification is done by comparing the row column element of 
permutation matrix. For the first time, the classification is 
done by comparing the first row –column element of the input 
graph by the first row-column element xi of each permutation 
matrix. At the nth level of decision tree the classification is 
carried out by comparing the row-column element xn of the 
permutation matrices. Graph G has 3 vertices and therefore it 
has 3! = 6 permutation matrices. The row column element of 
the 6 permutation matrices were then organized as a decision 
tree. 

 
The decision tree formed is of exponential size depending 

on the number of vertices and requires huge amount of storage 
if the number of vertices increases. A graph with n vertices 
has n! permutation matrices. A row-column element at level n 
of decision tree would be n! at the worst case. In [5], vertex 
invariants are used to reduce the amount of permutation 
matrices which subsequently reduces the size of decision tree. 
As the size of decision tree is directly proportional to the 
permutation matrices. The vertex invariants are used to 
partition the vertices of graph into equivalence classes such 
that all the vertices assigned to the same partition have the  

 
 
same values for the vertex invariants. The size of the decision 
tree is reduced remarkably. 

 
For the model and input graph, each of permutation 

matrices of input graph are computed and compared with the 
permutation matrices of the model graph. The comparison is 
carried out element by element. Time required for comparing 
the matrices is more as it needs to compare nxn  elements of 
permutation matrices. 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

a1= (a)  

a2 = (1, b, 0) 

a3 = (1, 0, c, 1, 0)  

Figure 1:  Row-column element 

 

Input: Graph G = (V, E) represented by adjacency matrix 

            Graph (G1, G2) 

Output: Graphs are Isomorphic begin 

 

1. Parse Graph (G1,G2) 

2. Check Graph Type, degree, nodes and labels 

3. Create Permutations of partition graph 
           Pg1 {{P1}, {P2} ---- {Pn}} 

           Pg2 {{P1}, {P2} ---- {Pn}} 

4. Create adjacency matrix   M1,M2,----,Mn of G1using Pg1 

5. Create adjacency matrix T1 of G2 using Pg2. 

6. For i = 1 to n  

          Check if Mi= T1 

7.  Detect graph are isomorphic 

end 

 

Algorithm 1: Existing Algorithm for graph isomorphism  
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IV. GRAPH ISOMORPHISM USING EUCLEDIAN VECTOR 

In the modified algorithm A2, we are using the vertex 
invariant property like the existing algorithm to find the count 
of permutation matrices. In our approach instead of computing 
the permutation matrices for the entire graph we compute the 
count of permutation matrix .Based on the count of 
permutation matrices we are computing the only one sequence 
of permutation matrix. For this matrix , compute the Euclidean 
vector  of the input graph  and the model graph. If the 
Euclidean vector of the input graph matches with the Euclidean 
vector of the model graph , graph isomorphism is detected and 
the two graphs are said to be isomorphic to each other. Thus by 
comparing Euclidean vector of matrices we are reducing the 
time complexity as compared to existing algorithm. 

Input: Graph G = (V, E) represented by adjacency matrix 

            Graph (G1, G2) 

Output: Graphs are Isomorphic begin 

 

1. Parse Graph (GP1,GP2) 

2. Check Graph Type, degree, nodes and labels 

3. Create single partition group of P1 and P2 of GP1 and GP2 

respectively 

4.For i=1to n 
            Read edge value of ith column as per P1 

            Partitioning element from GP1is E1g 

5. Calculate Euclidean value Eu of E1g 

           E1ui = Eu 

6. Sort the values of E1u array 

7. For i=1to n 

            Read edge value of ith column as per P2 

            partitioning  element from GP2 is E2g 

8. Calculate Euclidean value Eu of E2g 

           E2ui = Eu 

9. Sort the values of E2u array 
10. Check E1u = E2u 

11. Detect graph are isomorphic 

end 

 

Algorithm2: Modified Algorithm for graph isomorphism using 

Euclidean Vector  
 

V. EXPERIMENTAL RESULTS 

We performed number of experiments on randomly generated 

graphs. Experiments were carried out for both directed and 

undirected graph .The experiment environment is:  Intel(R) 

Core(TM) i3 CPU 540 @ 3.07GHz, Speed:  1,995.00 MHz, 

Cores: 4 1.8 GB RAM, Free memory:  426.4 MB (+ 759.7 MB 

Caches) Free swap:  1.8 GB with Linux (open suse 11.3) 

operating system. 
 

The algorithm is implemented in c++ language. For each 
experiment we generated one or more model graph. We use 
these model graphs to create isomorphic input graphs .All the  

 

graphs generated for the experiments were directed labeled and 
unlabelled and undirected labeled and unlabelled. 

We examine the time complexity experimentally; the time 
required for graph isomorphism detection using vertex 
invariant in the existing algorithm is more as compared to our 
algorithm which is implemented using vertex invariant and 
Euclidean vector.  

For experimental reference, we named the existing 
algorithm as Algorithm1 and the modified algorithm as as 
Algorithm2. For the directed labeled graph, when the number 
of vertices more than 500 the existing algorithm fails to 
perform the number of permutations and unable to detect graph 
isomorphism. In our proposed Algorithm2, the Euclidean 
vector is computed based on permutation counts and able to 
detect graph isomorphism for the graph having vertices more 
than 1000.  

Experimental result for the undirected labeled and 
unlabelled graph also gives better result than the existing 
algorithm. The existing algorithm fails to compute 
permutations and unable to detect graph isomorphism for the 
graph having vertices more than 30 in undirected labeled graph 
and more than 20 in unlabelled graph. 

Experimental result for directed and undirected graph for 
existing algorithm (Algorithm 1) and our algorithm (Algorithm 
2) are shown in figures. Our algorithm fails to detect subgraph 
isomorphism due to vertex invariant constraint 

 
Figure 2:  Time required for graph isomorphism detection 

for undirected labeled graph 

 

 

 

 

 

 

 

 



        International Journal of advanced studies in Computer Science and Engineering 
IJASCSE Volume 4, Issue 4, 2015 

www.ijascse.org Page 4 
 

Apr. 30 

 

 

Figure 3:  Time required for graph isomorphism detection 
for undirected labeled graph 

 

Figure 4:  Time required for graph isomorphism detection 
for undirected unlabeled graph using algorithm A1 

 

Figure 5:  Time required for graph isomorphism detection 
for undirected unlabeled graph using algorithm A2 

 

 

 

 

 

 

 

Figure 6:  Time required for graph isomorphism detection 
for directed labeled graph using algorithm A1. 

 

Figure 7:  Time required for graph isomorphism detection 
for directed labeled graph using algorithm A2. 

VI. CONCLUSION 

We conclude that we have successfully implemented the 

sequential algorithm for graph isomorphism detection by using 
the vertex invariant approach and studied the performance 

with respect to time for large size randomly generated graphs. 

Our algorithm A2 is no longer suitable for subgraph 

isomorphism detection. Experimental results shows that the 

time complexity reduces remarkably by Algorithm2 as 

compared to Algorithm1for directed, undirected graph, labeled 

as well as unlabelled graphs.  

 

In our next experiment we are parallelizing the algorithm to 

compare the performance of both algorithms. 
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