
 International Journal of advanced studies in Computer Science and Engineering
IJASCSE Volume 4, Issue 4, 2015

www.ijascse.org Page 1

Apr. 30

An Approach of Graph Isomorphism Detection based on

Vertex-Invariant

Vijaya Balpande

Dept of Computer Science and Engineering

GHRCE,, PJLCOE, Nagpur, India

Anjali Mahajan

Dept of Computer Science and Engineering

PIET, Nagpur, India

Abstract— Graph Isomorphism is a widely studied problem

due to its practical applications in various fields of networks,

chemistry and finger print detection, recent problems in biology

such as diabetes detection, protein structure and information

retrieval. An approach to the graph isomorphism detection is

based on vertex invariant. In the existing approach vertex

invariants is used to partition the matrix of input graph for

reducing size of decision tree to detect graph isomorphism. In

this approach the graph isomorphism detection is carried out by

comparing the entire adjacency matrix of input graph with the

model graph. Element by element comparisons requires more

time to detect graph isomorphism. In this paper we present

graph isomorphism detection algorithm based on vertex

invariant and Euclidean vector. We evaluate the proposed

algorithm on the various randomly generated directed and

undirected graphs by computing the Euclidean vector of input

graph adjacency matrix and model graph to make comparison

with existing algorithm. Experimental result shows that

computational time complexity is reduced remarkably as
compared to the existing sequential algorithm.

Keywords—Graph Isomorphism, Vertex Invariants, Eucledian

vector

I. INTRODUCTION

Graphs are widely used in real life applications to represent
the structure of objects, e.g. applications like molecules,
images, networks Graph isomorphism is a way of matching the
two graphs whether they are equivalent or not. There is
complete structural equivalence between two graph and differs
only in the names of vertices and edges. Graph Isomorphism is
a way of one to one mapping of vertices and edges of two
graphs. Graph isomorphism is highly studied problem in
research field and graph theory. Graph isomorphism problem is
extensively applied in many applications in various fields such
as data mining [1], pattern recognition [2], information
retrieval [3], chemistry [4].Most researchers believe that GI
problem is not NP-complete. As there is no polynomial
solution for GI it is not known to be in P nor to be NP-
complete.

 Graph matching can be done in two ways. Given two
graphs, checking whether two graphs are isomorphic or one
graph is a subgraph, of the other graph. In second method, an
input graph is matched with graphs present in a given database
called model graph .If an input graph entire structure is
matched with model graph then two graphs are said to be
isomorphic and if substructure of a graph is matched it is said

to be subgraph isomorphic. In [5] graph isomorphism detection
is based on decision tree approach based on the methodology
proposed by[6].The existing algorithm uses the vertex invariant
property to reduce the search space but the time complexity is
same as[6].Vertex invariants[7] are the attributes assigned to
the vertex which do not change after performing graph
isomorphism. The attributes such as label of vertex, label of
edge, degree of vertex are known as vertex invariants. By
applying vertex invariants property we can change the position
of vertices within the same group not from different group. In
the existing algorithm, the adjacency matrix of the model graph
and input graph are compared for testing isomorphism .In our
approach we applied the Euclidean norm on adjacency matrix
and compared the Euclidean vector of the input graph against
the model graph matrix which reduces the time complexity as
compared to existing algorithm[5].

In this paper section II describes the basic definitions and
notations. Section III describes the basic idea of the algorithm.
In section IV modified algorithm is described. In Section V
experimental results were given. Section VI specifies the
conclusion.

II. BASIC DEFINITION

A. Definition1:

In[8],the graph isomorphism is expressed as : Given two
graphs G1=(V1,E1) and G2=(V2,E2) ,if there exist 1 to 1
mapping function f from v1 to v2 such that (i , j) ∈ E1, if and
only if (f(i) ,f(j)) ∈ E2. The function f is called an isomorphism
from G1 to G2 .If the two graphs isomorphic to each other, it is
denoted by G1 ≅ G2.

B. Definition2:

The identity matrix M of order n x n is represented as

 mij = 1, if i = j
 0 otherwise (1)

Where m, is an element of M on the ith row and jth column

C. Definition3:

A permutation matrix is obtained from the identity matrix
by any row and column permutation. If M1 and M2 are the two
matrices of graph G1 and G2 respectively M1 is said to be

 International Journal of advanced studies in Computer Science and Engineering
IJASCSE Volume 4, Issue 4, 2015

www.ijascse.org Page 2

Apr. 30

isomorphic to M2 if there exists 1 to 1 mapping of function f

.from the rows of M1 to rows of M2.and from column of M1 to
column of M2. The function f is called an isomorphism from M1
to M2. In other words, M1 is isomorphic to M2 if and only if
there exists the permutation matrices P1 and P2 satisfying the
following relation

 M1= P1 M2 P2 (2)

III. EXISTING ALGORITHM

In [5], vertex invariant and decision tree concept is used to
test graph isomorphism. The vertex invariants are used to
partition the matrix of the graph before graph isomorphism
detection. By using vertex invariant property of graph, the size
of decision tree is reduced as compared to [6]. The technique
is similar to breadth pruning technique which reduces the size
of decision tree remarkably still the time complexity is almost
equivalent.

Decision tree is the most and simple method for
knowledge representation. The basic idea [6] of the
isomorphism algorithm is that all possible permutation of
adjacency matrix of each of the model graph was computed
offline and the permutation matrices were represented as
decision tree. The matrix of input graph is matched to those of
adjacency matrices in the decision tree which are identical to
it. At run time, the permutation matrices correspond to these
adjacency matrices represent the graph or subgraph
isomorphism.

By using the row-column element of each permutation

matrix we can recognize the model graph into decision tree. A
row-column element xi of n x n matrix is a vector and is
represented as xi = (y1i, y2i… yii, yi (i-1)…... yi1). The
representation of an adjacency matrix A by its row –column
element is illustrated in figure 1. The x1, x2---- are the row
column element of matrix x. A root node is present at the top
of decision tree. At each level of the decision tree the
classification is done by comparing the row column element of
permutation matrix. For the first time, the classification is
done by comparing the first row –column element of the input
graph by the first row-column element xi of each permutation
matrix. At the nth level of decision tree the classification is
carried out by comparing the row-column element xn of the
permutation matrices. Graph G has 3 vertices and therefore it
has 3! = 6 permutation matrices. The row column element of
the 6 permutation matrices were then organized as a decision
tree.

The decision tree formed is of exponential size depending

on the number of vertices and requires huge amount of storage
if the number of vertices increases. A graph with n vertices
has n! permutation matrices. A row-column element at level n
of decision tree would be n! at the worst case. In [5], vertex
invariants are used to reduce the amount of permutation
matrices which subsequently reduces the size of decision tree.
As the size of decision tree is directly proportional to the
permutation matrices. The vertex invariants are used to
partition the vertices of graph into equivalence classes such
that all the vertices assigned to the same partition have the

same values for the vertex invariants. The size of the decision
tree is reduced remarkably.

For the model and input graph, each of permutation

matrices of input graph are computed and compared with the
permutation matrices of the model graph. The comparison is
carried out element by element. Time required for comparing
the matrices is more as it needs to compare nxn elements of
permutation matrices.

a1= (a)

a2 = (1, b, 0)

a3 = (1, 0, c, 1, 0)

Figure 1: Row-column element

Input: Graph G = (V, E) represented by adjacency matrix

 Graph (G1, G2)

Output: Graphs are Isomorphic begin

1. Parse Graph (G1,G2)

2. Check Graph Type, degree, nodes and labels

3. Create Permutations of partition graph
 Pg1 {{P1}, {P2} ---- {Pn}}

 Pg2 {{P1}, {P2} ---- {Pn}}

4. Create adjacency matrix M1,M2,----,Mn of G1using Pg1

5. Create adjacency matrix T1 of G2 using Pg2.

6. For i = 1 to n

 Check if Mi= T1

7. Detect graph are isomorphic

end

Algorithm 1: Existing Algorithm for graph isomorphism

 1 2 3

1 a 1 1

2 0 B 0

3 0 1 c

 a3

 1

 0

 0 1 c

 a2

 1

0 b

a1

a

b

a

c

2 3

1

1

 International Journal of advanced studies in Computer Science and Engineering
IJASCSE Volume 4, Issue 4, 2015

www.ijascse.org Page 3

Apr. 30

IV. GRAPH ISOMORPHISM USING EUCLEDIAN VECTOR

In the modified algorithm A2, we are using the vertex
invariant property like the existing algorithm to find the count
of permutation matrices. In our approach instead of computing
the permutation matrices for the entire graph we compute the
count of permutation matrix .Based on the count of
permutation matrices we are computing the only one sequence
of permutation matrix. For this matrix , compute the Euclidean
vector of the input graph and the model graph. If the
Euclidean vector of the input graph matches with the Euclidean
vector of the model graph , graph isomorphism is detected and
the two graphs are said to be isomorphic to each other. Thus by
comparing Euclidean vector of matrices we are reducing the
time complexity as compared to existing algorithm.

Input: Graph G = (V, E) represented by adjacency matrix

 Graph (G1, G2)

Output: Graphs are Isomorphic begin

1. Parse Graph (GP1,GP2)

2. Check Graph Type, degree, nodes and labels

3. Create single partition group of P1 and P2 of GP1 and GP2

respectively

4.For i=1to n
 Read edge value of ith column as per P1

 Partitioning element from GP1is E1g

5. Calculate Euclidean value Eu of E1g

 E1ui = Eu

6. Sort the values of E1u array

7. For i=1to n

 Read edge value of ith column as per P2

 partitioning element from GP2 is E2g

8. Calculate Euclidean value Eu of E2g

 E2ui = Eu

9. Sort the values of E2u array
10. Check E1u = E2u

11. Detect graph are isomorphic

end

Algorithm2: Modified Algorithm for graph isomorphism using

Euclidean Vector

V. EXPERIMENTAL RESULTS

We performed number of experiments on randomly generated

graphs. Experiments were carried out for both directed and

undirected graph .The experiment environment is: Intel(R)

Core(TM) i3 CPU 540 @ 3.07GHz, Speed: 1,995.00 MHz,

Cores: 4 1.8 GB RAM, Free memory: 426.4 MB (+ 759.7 MB

Caches) Free swap: 1.8 GB with Linux (open suse 11.3)

operating system.

The algorithm is implemented in c++ language. For each
experiment we generated one or more model graph. We use
these model graphs to create isomorphic input graphs .All the

graphs generated for the experiments were directed labeled and
unlabelled and undirected labeled and unlabelled.

We examine the time complexity experimentally; the time
required for graph isomorphism detection using vertex
invariant in the existing algorithm is more as compared to our
algorithm which is implemented using vertex invariant and
Euclidean vector.

For experimental reference, we named the existing
algorithm as Algorithm1 and the modified algorithm as as
Algorithm2. For the directed labeled graph, when the number
of vertices more than 500 the existing algorithm fails to
perform the number of permutations and unable to detect graph
isomorphism. In our proposed Algorithm2, the Euclidean
vector is computed based on permutation counts and able to
detect graph isomorphism for the graph having vertices more
than 1000.

Experimental result for the undirected labeled and
unlabelled graph also gives better result than the existing
algorithm. The existing algorithm fails to compute
permutations and unable to detect graph isomorphism for the
graph having vertices more than 30 in undirected labeled graph
and more than 20 in unlabelled graph.

Experimental result for directed and undirected graph for
existing algorithm (Algorithm 1) and our algorithm (Algorithm
2) are shown in figures. Our algorithm fails to detect subgraph
isomorphism due to vertex invariant constraint

Figure 2: Time required for graph isomorphism detection

for undirected labeled graph

 International Journal of advanced studies in Computer Science and Engineering
IJASCSE Volume 4, Issue 4, 2015

www.ijascse.org Page 4

Apr. 30

Figure 3: Time required for graph isomorphism detection
for undirected labeled graph

Figure 4: Time required for graph isomorphism detection
for undirected unlabeled graph using algorithm A1

Figure 5: Time required for graph isomorphism detection
for undirected unlabeled graph using algorithm A2

Figure 6: Time required for graph isomorphism detection
for directed labeled graph using algorithm A1.

Figure 7: Time required for graph isomorphism detection
for directed labeled graph using algorithm A2.

VI. CONCLUSION

We conclude that we have successfully implemented the

sequential algorithm for graph isomorphism detection by using
the vertex invariant approach and studied the performance

with respect to time for large size randomly generated graphs.

Our algorithm A2 is no longer suitable for subgraph

isomorphism detection. Experimental results shows that the

time complexity reduces remarkably by Algorithm2 as

compared to Algorithm1for directed, undirected graph, labeled

as well as unlabelled graphs.

In our next experiment we are parallelizing the algorithm to

compare the performance of both algorithms.

REFERENCES

[1] T. Washio and H. Motoda. State of the art of graph-based data

 mining. ACM SIGKDD Explorations Newsletter, 5(1):59–68,2003
[2] D. Conte and et al. Graph matching applications in patternrecognition

and image processing. In International Conferenceon Image Processing,

volume 2, pages 21–24. IEEE,2003.

[3] A. T. Berztiss. A backtrack procedure for isomorphism of directed
graphs. Journal of the ACM, 20(3):365–377, 1973.

 International Journal of advanced studies in Computer Science and Engineering
IJASCSE Volume 4, Issue 4, 2015

www.ijascse.org Page 5

Apr. 30

[4] J. Braun and et al. Molgen-cid, a canonizer for molecules andgraphs

accessible through the internet. Journal of ChemicalInformation and
Computer Sciences, 44(2):542–548, 2004.

[5] Ming Qiu , Haibin Hu, Qingshan Jiang and Hailong Hu : A New

Approach of Graph Isomorphism Detection based on Decision Tree

IEEE, Second International workshop on Education Technology
and Computer Science,2010

[6] B.T.Messmer and H.Bunke: A decision tree approach to graph and

subgraph isomorphism detection Pattern Recognition 32 (1999) 1979-
1998

[7] B.T.Messmer and H.Bunke: Subgraph Isomorphism in Polynomial

Time. University of Bern, Institute of Computer Science and Applied
Mathematics, Bern, Switzerland Technical Report IAM 1995-003, 1995

[8] Narsingh Deo: Graph Theory with Applications to Engineering and
Computer Science ,Prentice Hall,Inc, 1995

