
International Journal of Advanced studies in Computer Science and Engineering
IJASCSE, Volume 4, Issue 2, 2015

www.ijascse.org Page 16

Feb. 28

Test case minimization for object oriented technique

on the basis of object oriented coupling

SUPRIYA

 Deenbandhu Chhotu Ram University of

Science & Technology, Sonepat, Haryana

 CHINKY ANEJA

 Kurukshetra University, Kurukshetra,

Haryana

 Abstract— Test case minimization techniques involve selecting

those test cases in an order that improves the performance of

testing. It is inefficient way in which every test cases for every
program function should be test at least once if any change occurs.
Test case minimization; minimize test cases in a test suite in an
order that increases the effectiveness in achieving some
performance goals. One of the most important performance goals
is the rate of fault detection. Test cases should run in an order that
increases the possibility of fault detection and also that detects the
most severe faults at the earliest in its testing life cycle. The testing

approach used for object oriented programming differs from the
one used for conventional programming because an object-
oriented programming language provides explicit support for
polymorphism, inheritance, overloaded functions, generic
functions, templates etc. These features improve the quality of
software development but on the other hand these features make
traditional software testing difficult to adapt to OO based software
testing. Also with strong coupling the calculation of faults cannot
be done efficiently. Therefore there should be low coupling and

high cohesion in between the modules .The interaction among the
modules propagates the features can be reused and if any error
occurs the propagation makes the system fails. Which is also called
RIPPLE EFFECT ANALYSIS, which is introduced in change
impact analysis in coupling impact

Keywords — Activity diagram, Coupling,, Change impact

analysis, Cyclomatic complexity, Fault detection technique

,Object oriented techniques, Test case generation.

I. INTRODUCTION

Testing is the process of evaluating a system or its
component(s) with the intent to find that whether it satisfies

the specified requirements or not. Testing is a process of

demonstrating that there are reduced critical errors in the

software. Testing can always show the presence of errors

and not the absence of errors.

For the purpose of doing static and dynamic testing, various

techniques are followed. System testing is also one of major

type. In it load testing, stress testing and volume testing are

used for checking performance, recovery testing to check

recovery point, configuration testing to check various

configuration on the system and regression testing for the

purpose of revalidation of the new versions of the existing

software and many more.

Coupling, as the name suggests, is the interaction between

the two modules. In object oriented testing the testing,

involves the testing of objects and classes that are the part of

module which is impractical and inefficient with test cases

to execute every test for every program function if once any

error occurs due to the constraints of time and cost of the

project specially when the modules are binded with

coupling. Most of the time the testing team is asked to

checks last minute changes in the code just before making a

release to the client, in this situation the testing team needs
to check only the affected areas. So in short for the test case

minimization technique help the testing team should get the

input from the development team about the nature/amount

of change in the fix so that testing team can first check the

fix and then the side effects of the fix. Test under coupling

should follow on critical module function. To make object

oriented testing easier, software engineers typically reuse

test suites of the original program, but also new test cases

may be required to test new functionalities of the new

version. The focus here is on the reuse of test cases as most

ideas about costs and benefits come from test suite
granularity. There are four methodologies, considered here,

that reuse the test suites of the original version of the

software: retest-all, coupled test selection (CTS) , test suite

reduction (TSR) and test case minimiization (TCM). Retest

all, reruns every test case of the test suite. It is not a feasible

approach as time period to complete the work is fixed. CTS,

on the other hand selects some of the test cases from the test

suite on temporary basis where as TSR permanently

removes test cases from the test suite depending upon the

modification in the existing project. Selection and removal

of test cases from test suite can be problematic in some

situation. So, a new methodology is there namely test case
minimization.

Test case minimization techniques reduce the number of test

cases that are better at achieving the testing objectives are

run earlier testing cycle.

 There are many possible goals of minimization, including

the following:

 Testers may wish to increase the rate of fault

detection of a test suite, that is, the likelihood of

revealing faults earlier in a run of minimized tests

using that test suite.

International Journal of Advanced studies in Computer Science and Engineering
IJASCSE, Volume 4, Issue 2, 2015

www.ijascse.org Page 17

Feb. 28

 Testers may wish to increase the coverage of

coverable code in the system under test at a faster

rate, allowing a code coverage criterion to be met

earlier in the test process.

 Testers may wish to increase their confidence in

the reliability of the system under test at a faster
rate.

 Testers may wish to increase the rate at which

high-risk faults are detected by a test suite, thus

locating such faults earlier in the testing process.

Software testing is a strenuous and expensive process.

Research has shown that at least 50% of the total software

cost is comprised of testing activities. Here we are working

with test case minimization technique of object oriented
technique with the impact of coupling involves the change

impact analysis in which the coupled modules shows the

presence of any change. Test case minimization (TCM)

involves the explicit planning of the execution order of test

cases to increase the effectiveness of software testing

activities by improving the rate of fault detection earlier in

the software process. To date, TCM has been primarily

applied to improve regression testing efforts of white box,

code-level test cases. Here we are performing testing by

using activity diagram for ATM machine.

II. LITERATURE REVIEW

 Impact of coupling on object oriented
techniques by using the approach of activity diagram for the
generation of test cases. Ordering of test cases is to be done
so that maintenance cost can be reduced and resources can be
utilized in a proper manner. For considering inheritance
hierarchy, the relation between classes at different levels has
been considered and testing effort has been calculated for
each class at a particular level. For minimization of test
cases, impact of coupling over coverage per unit time is
considered.
 Coupling based testing is a data flow

based technique which represents state space interactions

between classes and objects. Static and dynamic analysis of

the programs and highlights the areas to be tested, for

methods under test. Which helps the developers in

analyzing and understanding the critical interactions among

the modules. Every coupling sequence has an associated set

of coupling variables and coupling paths. The power that

inheritance and polymorphism concept brings to the

expressiveness of programming languages also brings a

number of new anomalies and fault types. Offutt et al. have
presented a fault model for object oriented programs and

discussed specific categories of inheritance and

polymorphic faults.[2] [2] This paper have introduced new

data flow analysis techniques for object-oriented (OO)

software, new testing criteria to address problems that can

arise from using inheritance, dynamic binding, and

polymorphism, and results from an experimental validation

of the techniques. The techniques are based on the previous

work for procedure-oriented software called coupling-based

testing (CBT).The traditional notion of software coupling

has been updated to apply to OO software, handling then

relationships of aggregation, inheritance, dynamic binding,
and polymorphism. This allows the introduction of a new

integration analysis and testing technique for dataflow

interactions within OO software, called OO coupling-based

testing (OOCBT). This paper also presented a set of test-

adequacy criteria that take inheritance, dynamic binding,

and polymorphism into account.

[1] Software testing is an essential and integral part of the

software development process. The testing effort is divided

into three parts: test case generation, test execution, and test

evaluation. Test case generation is the core of any testing

process and automating it saves much time and effort as

well as reduces the number of errors and faults. This paper
proposes an automated approach for generating test cases

from one of the most famed UML diagrams which is the

activity diagram. The proposed model introduces an

algorithm that automatically creates a table called Activity

Dependency Table (ADT), and then uses it to create a

directed graph called Activity Dependency Graph (ADG).

The ADT is constructed in a detailed form that makes the

generated ADG covers all the functionalities in the activity

diagram. Finally the ADG with the ADT are used to

generate the final test cases. The proposed model includes

validation of the generated test cases during the generation
process to ensure their coverage and efficiency. The

generated test cases meet a hybrid coverage criterion in

addition to their form which enables using them in system,

regression as well as integration testing. The proposed

model saves time and effort besides, increases the quality of

generated test cases. The model is implemented on three

different systems and evaluated to show its effectiveness.[1]

Motivation

1.1.1. Inter-dependence of lower levels of inheritance

hierarchy on the upper levels after change in any class

was not considered earlier.

Current approach presented focus on minimizing of

coupling impact from faults on object oriented design by

controlling their propagation via coupling. Best test case can
be assessed so that unnecessary coupling can be avoided to

come up with a better design. A detailed case study of

Automated Teller Machine (ATM) has been carried out to

assess the effectiveness of proposed approach over the other

existing one.

International Journal of Advanced studies in Computer Science and Engineering
IJASCSE, Volume 4, Issue 2, 2015

www.ijascse.org Page 18

Feb. 28

1.1.2 To know how the impact of change t one level can

affect the other classes

1.1.3. Every test case detects some fault that faults are

new or detected earlier, if new then how critical is that.

Consider all the test cases of a class and calculate number of

faults detected per unit time then select the first test case and

then calculate new faults per unit time of each test case and

select the best one. New fault means which are not

discovered by selected test cases. Keep repeating this

process until hundred percent faults are detected.

Objectives

In the light of above discussion, the objectives of the thesis

are:

1. To minimize the coupling affect by selecting an affective

test suite reducing the number of test cases and also utilize

the limited resources in such a way so that the cost, time,

man power can be used in an efficient manner.

2. To perform the two test case generation and test case

minimization by selecting the test paths which will be

having least affects of coupling .

1st level is generating a class diagram and an activity
diagram for the ATM case study which will involves all the

possible paths that can affects badly to the Class which

should be selected on the basis of number of descendents,

number of inherited attributes and level of class in the

inheritance hierarchy.

2nd level is TEST CASE generation from activity diagram,

that means test cases corresponding to the badly affected

Class would be coupled on the basis of Fault coverage per

unit time. Keeping in view of above objectives, the work

has been done for designing an algorithm that could be used

for generating the test cases of the affected module where
the effect of any module change has been propagated then

there minimization and extracting the suitable test paths.

3rd level is working on the test path that covers all the

possible linking from start to end.

Testing process

Identify and modify/remove the obsolete test cases from T if
specifications have changed.

Test case generation problem and selecting the

effective path from activity diagram

Select T’ T, a set of test cases to execute on P’
test selection problem

Test P’ with T’, establishing P’’s correctness w.r.t. T’

Test suite execution problem

If necessary, create T’’, a set of new functional or structural

test cases for P’

Coverage identification problem

Test P’ with T’’, establishing P’’s correctness w.r.t. T’’

Test suite execution problem

Create T’’’, a new test suite and test execution profile for P’,
from T, T’, and T’’.

Test suite maintenance problem and fault coverage

problem.

Methodologies

To support this

process of coupling,

developers often

create an initial test

suite, and then

minimize it for

testing. The simplest
regression testing

strategy, retest all,

reruns every test case

in the initial test

suite. This approach,

however, can be

prohibitively

expensive rerunning

all test cases in the

test suite may require

an unacceptable
amount of time.

Fig:1 Methodology used for the proposed work

1) Test case generation technique –“following the

proper algorithm for”
2) test case selection techniques- ―Screen‖
3) Test case minimization techniques- ―Order and

selecting”
4) Test suite reduction techniques- ―Remove‖

(minimizing testing paths for the sake of costs (by

reducing the test suite) by permanently eliminating

redundant test cases from test suites in terms of

code or functionalities exercised and selecting the

path that cover the main path efficiently)

A. 2.1.2.1 Coupling Test Selection (RTS)

Select T’ to be a subset of T and use this test suite for

testing purpose

International Journal of Advanced studies in Computer Science and Engineering
IJASCSE, Volume 4, Issue 2, 2015

www.ijascse.org Page 19

Feb. 28

 (A) Minimisation Techniques. Minimization-based test

selection techniques attempt to select minimal sets of test

cases from T that yield coverage of modified or affected

portions of P.

(B) Dataflow Techniques. Dataflow-coverage-based test

selection techniques select test cases that exercise data
interactions that have been affected by modifications.

Pros:

1. Test fixed bugs immediately.

2. Can check side effects of fix (depends on

the how broad is the test).

3. Reduce time of rerunning the tests.

Cons: 1.Require development time.

B. 2.1.2.2 Test Suite Reduction (TSR)

This technique uses information about program and test

suite to remove the test cases, which have become

redundant with time, as new functionality is added. It is

different from test selection as former does not permanently

remove test cases but selects those that are required

C. 2.1.2.3 Test Case minimization (TCM)

Test case minimization techniques selects arrange test cases

so that those test cases that are better at achieving the testing

objectives are run earlier in the testing cycle. For instance,

software engineers might want to schedule test cases so that

code coverage is achieved as quickly as possible or increase

the possibility of fault detection early on in the testing.

Studies have shown that some simple test case methods can

remarkably improve testing performance, especially the
rates at which test suites detect faults. The improved rates of

fault detection can provide early feedback on the software

being tested.

T1: Total statement coverage . It is possible to measure the

coverage of statements in a program by its test cases. Then

the test cases can be prioritized in terms of the total number

of statements they cover by sorting them in the order of

coverage achieved.

T2: Additional statement coverage. This is like T1 but it

relies on feedback on the coverage achieved so far in testing

so that it then focuses on statements not yet covered. For

illustration in Program, both T1 and T2 first choose test case
3 as it covers most of the statements of procedure P. Then

T1 selects test case 1 as it covers more statements, but here

T2 does not select test case 1 as all of its statements have

already been covered, instead it chooses test case 2. After

this T1 selects test case 2, but T2 finishes as it does not

select test case 1 for its statements have been covered as

previously stated.

Experimental evaluation

Module1-

Here the proposed model will works over activity diagram

for the ATM Working. In which the user selects the choice

that she/he wish to. Then , the system checks whether the

choice selected is valid or not, in case it is valid, the system

will retrieve the balance of the user then check whether the

balance is sufficient to withdraw from or not; otherwise, the

system displays an error message for the user to enter an

appropriate value. In case the balance is sufficient the
system completes the withdraw process successfully by

updating the balance, dispensing the cash and finally

printing a receipt for the user. In the same way other choices

will work for the account entity of the client using the ATM.

The input and output of each activity are shown using

activity parameter nodes

 Fig2: Activity diagram for ATM machine

Module 2

Algorithm for Generating the Test Case
1. Draw the activity diagram.

2. From the activity diagram, generate the Activity

Dependency Table (ADT).

3. From the ADT, to generate Activity Dependency

Graph(ADG).

4. Pass on ADG and get all the possible test paths

using the depth first search technique.

International Journal of Advanced studies in Computer Science and Engineering
IJASCSE, Volume 4, Issue 2, 2015

www.ijascse.org Page 20

Feb. 28

5. Create a table TC with six columns (Test case

Number, Test path Node, Node Input, Node

Expected Output, Test case Input, and Test case

Expected Output) to be filled with the final test

cases.

6. Initialize counters to be used for indexing the list
of nodes in each path and for indexing the table of

final test cases TC

7. For each test path fetch the input and the expected

output for each node from the corresponding ADT

and add it to the corresponding cells (Node Input,

Node Expected Output) in a new test case row.

8. Add to this new test case row from the ADT, the

input of the first node in the current test path to the

―Test case Input‖ cell and add the output of the

final node in the current test path to the ―Test case

Expected Output‖ cell, then add the test case row

to the TC.
9. Return the TC table after all the paths are being

updated and added in TC.

10. Draw the cyclomatic diagram for the generated

test paths.

11. Minimized the test paths that are generated.

12. End the system [10].

Each step in this algorithm is used to generate the Activity
Dependency Table (ADT) with all activities which

involved decisions, loops and synchronization along with

the entity activity. The goal of this step to showing the

activities that helps in dealing with every control with other

entities which can be useful for system for testing. In which

it includes the input and the expected output values for each

activity with their Dependencies of each activity on others.

Symbols for each activity gives an ease for referencing it in

determining dependences and using it in the other involved

modules.

 Fig 3: Activity dependency table

Module 3-

With generation of ADT it will automatically generate the

Activity Dependency Graph (ADG). By introducing only

one no matter how many times they are used in the activity

diagram. This will decrease the search space in the ADG.

edged represents the transitions from one activity to another
in the ADG.

The presence of an edge determines by checking the

dependency column for the current node’s symbol.

Synchronization, decisions and loops are demonstrated

using edges as well

International Journal of Advanced studies in Computer Science and Engineering
IJASCSE, Volume 4, Issue 2, 2015

www.ijascse.org Page 21

Feb. 28

Fig4 Activity dependency graph

Module 4

The graph helps in determining the test paths. The number

of

test path is verified by
Cyclomatic Complexity, V (CAG) for the flow graph CAG,

is defined as:

V (CAG) = E – N + 2

 Where E, is the number of edges; N is the number of

nodes

Here E- 29 and N is 18 and after calculating them we got

29-18+2 which results with 13paths

 Test Cases of Class STUDY
On the bases of independent path test cases are designed.

Test cases are shown in table

 Test Cases

Serial number Test case

1 ABCDG

HNOPQR

2 ABCDGJ

KNOPQ R

3 AB CD G J

K LM ER

4 AB CDG J KLM

O P Q R

5 A B CD G J

KL M R

Fault can be detected in class STUDY:

Fault1:- at node D, in definition of function
Fault2:- At E node, checking condition

Fault3:-at node J, switch statement

Fault4:-at node K

Fault5:-at node L

Fault6:-at node M

Fault7:-at node R

Each fault is assigned a weight as shown in table 4.3

 general fault weight table

Type of fault Fault weight

Type mismatch of arguments in

function
2

Check condition in if block 2

Fault in Statements inside if block 1

Fault in switch statement 2

The faults of class study are assigned weight as shown in

Fault Weight

Fault Number Fault Weight

1 2

2 2

3 2

4 1

5 1

6 1

7 1

International Journal of Advanced studies in Computer Science and Engineering
IJASCSE, Volume 4, Issue 2, 2015

www.ijascse.org Page 22

Feb. 28

Test cases and fault of class STUDY

Random Test Suite and Fault Table

 T1 T2 T3 T4 T5 T6

F1(2) * * * * * *

F2(2) * * * * * *

F3(2) * * * * * *

F4(1) * *

F5(1) * *

F6(1) * *

F7(1) * * * * * *

total

fault

8 8 8 8 8 8

time

taken

5 7 11 4 10 12

AFD Result of Test Suite before minimization:-

TFi= ith fault is detected by which test case.

N=total number of test cases

M=total number of fault

APFD= 1- TF1+TF2+…………. +TFm + 1

 n*m 2n

References

[1] Pakinam N. Boghdady, Nagwa L. Badr, Mohamed

Hashem and Mohamed F.Tolba, A Proposed Test Case

Generation Technique Based on Activity Diagrams,

International Journal of Engineering & Technology IJET-

IJENS Vol: 11 No: 03

[2] Mr. Kailash Patidar, Prof. Ravindra Kumar Gupta,
Prof. Gajendra Singh Chandel, ―Coupling and

Cohesion Measures in Object Oriented Programming‖,

International Journal of Advanced Research in Computer

Science and Software Engineering, Volume 3, Issue 3,

March 2013.

3. A.V.K. Shanthi, G. Mohan Kumar. ―A Heuristic

Technique for Automated Test Cases Generation from UML

Activity Diagram‖, Journal of Computer Science and

Applications. ISSN 2231-1270 Volume 4, Number 2 (2012),

pp. 75-86..........3

4. V. S. Bidve and Akhil Khare ,― A Survey Of Coupling

Measurement In Object Oriented Systems‖, International
Journal of Advances in Engineering & Technology, Jan

2012,18

5. A. Aloysius, L. Arockiam, ―Coupling Complexity Metric:

A Cognitive Approach‖, I.J. Information Technology and

Computer Science, 2012, 9, 29-35.

6. A. Agrawal and R. A.Khan, ―Role of Coupling in

Vulnerability Propagation‖, Software engineering : an

international Journal (SeiJ), Vol. 2, no. 1, March 2012.

7. V. S. Bidve 1 , Akhil Khare. ―A SURVEY OF

COUPLING MEASUREMENT IN OBJECT ORIENTED

SYSTEMS‖, information Technology Department, M.Tech.

(II), BVCOE, Pune, International Journal of Advances in

Engineering & Technology, Jan 2012.

8. Vipin Saxena, Santosh Kumar , "Impact of Coupling and
Cohesion in Object-Oriented Technology‖, Babasaheb

Bhimrao Ambedkar University, Lucknow, India. accepted

August 15th, 2012

9. Bixin Li, Xiaobing Sun Hareton Leung and Sai Zhang, ―

Code-Based Change Impact Analysis Techniques Software

Testing, Verification And Reliability‖, Softw. Test. Verif.

Reliab. (2012)

10. Pakinam N. Boghdady, Nagwa L. Badr, Mohamed

Hashem and Mohamed F.Tolba, A Proposed

Test Case Generation Technique Based on Activity

Diagrams, International Journal of Engineering &

Technology IJET-IJENS Vol: 11 No:
11.Mr. Kailash Patidar, Prof. Ravindra Kumar Gupta, Prof.

Gajendra Singh Chandel,―Coupling and Cohesion Measures

in Object Oriented Programming‖, International Journal of

Advanced Research in Computer Science and Software

Engineering, Volume 3, Issue 3, March 2013.

12. Roger T. Alexander, Jeff Offutt and Andreas Stefik,

―Testing coupling relationships in object-oriented

programs‖ Softw. Test. Verif. Reliab. 2010; 20:291–327

Published

online 21 January 2010 in Wiley Online Library

(wileyonlinelibrary.com). DOI: 10.1002/stvr.417
13. Baikuntha Narayan Biswal. ―Test Case Generation and

Optimization of Object-Oriented Software using UML

Behavioral Models‖, Department of Computer Science and

Engineering National Institute of Technology, Rourkela

Rourkela-769 008, Orissa, India, July, 2010

14. Debasish Kundu, Debasis Samanta: ‖A Novel Approach

to Generate Test Cases from UML Activity Diagrams‖, in

Journal of Object Technology, vol. 8, no. 3, May–June

2009, pp. 65–83, http://www.jot.fm/issues/issue 2009

05/article1/

15. Aynur Abdurazik and Jeff Offutt. ―Using coupling-

based weights for the class integration
and test order problem‖.,The Computer Journal, pages 1,14,

August 2007

16. Aynur Abdurazik and Jeff Offutt. ―Coupling-based class

integration and test order‖ . In Workshop on Automation of

Software Test (AST 2006), pages 50{56, Shanghai,China,

May 2006.

