
December 31, 2015

[INTERNATIONAL JOURNAL OF ADVANCED STUDIES IN
COMPUTER SCIENCE AND ENGINEERING

IJASCSE, Volume 4 Issue 12, 2015

www.ijascse.org Page 1

A Novel Approach to Compress Centralized

Text Data using Indexed Dictionary

Vivek Dimri
Jamia Hamdard, New Delhi

Prof Ranjit Biswas
Jamia Hamdard, New Delhi

Abstract- Data compression is very important feature in

terms of saving the memory space. In this proposal, an

indexed dictionary based compression is used for text

data, where the word’s reference in dictionary is used in

compression. This approach is not file based; a common

dictionary is used for compression. Which contains the

words, the position of the word in dictionary is one of

the key parts of encoded frame which is compressed

form of the text word. This is lossless compression. This

compression approach is also take cares of small words

like one or two characters words which usually decrease

the efficiency of compression algorithms. This approach

is also deals with file having special characters as a

word. Special character words, alpha numeric words,

normal texted words and small words all deals

differently which makes this approach more efficient.

Since a centralized dictionary is used for data

compression, therefore; this approach is not preferred

for transfer compressed file, while it is suitable to store

text data in compressed form in hard disk drive and

centralized storage or cloud drive for memory

utilization.

Keywords—Centerlized dictionary based compression;

Text file compression;

I. INTRODUCTION

Text compression is typically used to save storage.

Dictionary-based text compression is a compression

technique, which provides the most significant

improvement in the text compression performance [1].

It is based on the notion of replacing whole words

with shorter codes from the real text file. Usually

large volume of words with their codes is preserved in

the dictionary [1]. In indexed dictionary based

compression, a common or global dictionary is used

for compression. As compare to other compression

algorithm or techniques proposed approach is not file

based it is indexed dictionary based so once a

dictionary has been made it is easier to compress and

decompress the text. Using this approach good

compression ratio can be achieved. This approach will

be very useful if a text file having larger words.

It is important to implement dictionary such a way so

addition of new words are easier as well as fetching

the words should also not be complex. A smart

dictionary is suggested for this approach, like if

searching word does not exist in dictionary, that word

automatically at the end, against appropriate index.

Detail description of compression process using

proposed approach is defined in proposed solution

section.

LITERATURE REVIEW

A dictionary based method can be improved

significantly by suitably reusing parts of the

dictionary entries. Extensive simulation results have

been used to support the efficiency of the superiority

of the proposed technique against the corresponding

already known techniques with respect to

compression ratio and dictionary size [4].

Recent techniques uses bit toggle information to

create matching patterns and thereby improve

compression ratio. However, due to lack of efficiency

in matching scheme, the existing techniques can

match up to three bit differences [1].

The size of the original files which is carefully

compared with the compressed files based on the

LIPT, StarNT and WRT preprocessing techniques. It

is very vivid that bzip2 + StarNT could provide a

better compression performance that maintains a

convincing compression and decompression speed

while it is compared with LIPT [10].

II. PROBLEM STATEMENT

Since optimum utilization of memory is very

important concern and in order to do that, data must

be stored in compressed format so it will take less

space in memory. So far the techniques which are

being used to compressed text data uses character by

December 31, 2015

[INTERNATIONAL JOURNAL OF ADVANCED STUDIES IN
COMPUTER SCIENCE AND ENGINEERING

IJASCSE, Volume 4 Issue 12, 2015

www.ijascse.org Page 2

character compression rather entire word or some

other which works on words they only use reference

from dictionary.

Dictionary which is being used in dictionary based

compression is not self organized this paper suggest a

self organized dictionary which also capable of

learning the words which previously is not having.

Since this approach is used position of word in

compression, thus word’s position cannot be change

once it has been stored in the dictionary. Therefore,

words cannot be rearranged in the dictionary.

Another important fact about the dictionary is,

dictionary is indexed based so word directly can be

fetched from dictionary for example word[Pos].

III. PROPOSED SOLUTION

The proposed dictionary based compression method

will first read the word from text file and then it will

check its location (reference) in dictionary and put the

specific compressed value as per encoding is define in

figure-3.

If the word is not found in the dictionary then it will

be inserted to appropriate location as per the

construction rule define for dictionary.

Dictionary: Proposed dictionary is index based.

There are two indexes store the words in dictionary.

Since a text file may have normal character data word,

alpha numeric and special symbol word, and one or

two character long word, in order to deals with all

mentioned words following three kinds of dictionary

suggested in this approach.

i. Dictionary for normal text data: In this dictionary

shown in figure-1, two indexes are used to store data.

First index or main index is for initial character of

word and second index or sub index is total numbers

of characters in the word. All the characters of the

word must converted either small case or uppercase

(depends on developer choice in which case he wants

to implement the dictionary) before storing in the

dictionary. The range of main index will be 26

because, this dictionary store only character data

which are already converted in single case. Second

index of the dictionary is called sub index which is the

word length (total number of characters in the word),

and then at the last word is stored in dictionary in

sequential fashion. For example; word “any” has to

store in dictionary, for this word, initial character is

‘a’ therefore, main index of the word would be 1 (1

for a, 2 for b, and so on). Now total number of

characters in the word any are 3, therefore; the sub

index will be 3, free position available in the

following dictionary against main index 1 and sub

index 3 is 51, so word any will be stored at position

51 of dictionary with index 1 sub-index 3.

ii. Dictionary for single and double character

words: Since; single and double characters words are

the main cause which decrease the compression ratio

of any compression approach and in order to diminish

this, a separate dictionary is proposed which will store

the single and double character words including

special character words as per shown in figure-2. It is

the responsibility of compression algorithm to take

care of normal character and special character words.

iii. Special character words: There is a separate

dictionary for storing special character words which

are stored in the dictionary as per number of

characters in word. There is no main index only single

index (sub index) is used to store word. Figure-3

shows the dictionary for special characters word.

Figure-1: Dictionary for word having more than two

characters

December 31, 2015

[INTERNATIONAL JOURNAL OF ADVANCED STUDIES IN
COMPUTER SCIENCE AND ENGINEERING

IJASCSE, Volume 4 Issue 12, 2015

www.ijascse.org Page 3

Figure-2 Dictionary for the word having one or two

characters

Figure-3 Dictionary for the word having special characters

Basic operations of dictionary that is insertion and

searching word is defined below-

Insertion: Insertion operation specifies inserting or

adding a new word in dictionary. In order to insert a

new word first of all that word has to be converted in

either case (upper or lower) and its associated bits

must be assigned in encoding tag (defined in encoding

section later). Once case of the word (i.e. upper or

lower) has changed as per dictionary rule; the first

character of the word is find out and also count the

number of characters in the word. Initial character will

be the first index and number of characters in the

word will be the second index. Word will be stored in

the dictionary at the end as per number of characters

in the words.

For example: suppose word Bulk is not present in the

dictionary then first of all, it will be converted to

either uppercase or lower case (depends in which case

directory is been implemented) then we will find its

index value which is 2 (2 for b) and the number

characters in the word Bulk i.e. 4, then it will be

stored against sub-index 4 of main index b. The word

will be stored at the end of the row.

Searching word: Word can be search as per index

value given for the compressed string. For example

suppose from above mention dictionary, word against

indexes 2,4,2 have to find, for this, main index is 2

and sub index is 4 and the location of word in

dictionary is 2, that is the word beam.

Compression: Encoding format for the compression

of word using index based dictionary is given below:

Figure- 4 Encoding format for compression

Description of fields:

Flag or F: This 2 bits field is used to specify whether

accepted word is space, newline, special characters or

simple word. For a space and newline last three fields

(CS, Ic, Pos) are discarded.

Number of Characters or NC: This 4 bit field

specifies how many characters are there in a word.

This field is used as sub index for word in the indexed

dictionary.

Case Sensitivity or CS: This field describes the case

bit of each character of word. For lower case

dictionary implementation, if character of the word is

in upper case then it will have value 1 at that position

else 0. For example; word “ThiS” will have the CS

value 1001 since it’s first and last characters are in

upper case and middle characters are in lower case.

This field is only applicable if flag is 11 otherwise this

field is discarded.

Initial Character or Ic: This field contains initial

character of the word. It is 1 byte (8 bits) long field

and is worked as main index for the word in the

dictionary.

Position or Pos: This 8 bits long field specifies the
location of word in dictionary.

Field No of

Bits

Bit Sequence Purpose

F 2

00 Space

01 New Line

10 Word with special

characters

11 Alpha characters word only

NC 4 - Specify the number of

characters in the word

CS 0-8 - Case sensitivity bits

Ic 5 - Initial character

Pos 8 - Position in dictionary

December 31, 2015

[INTERNATIONAL JOURNAL OF ADVANCED STUDIES IN
COMPUTER SCIENCE AND ENGINEERING

IJASCSE, Volume 4 Issue 12, 2015

www.ijascse.org Page 4

Table-1 field description of encoding format of compression

Compression Techniques: To compress text, Text

file or text data will be compressed as per following

steps-

Step-1 Read the word from file and check it’s

characters

Step-2 If all characters are alpha then set flag=11,

else set flag as per table-1

Step-3 If flag=11; Change the case of string to

upper or lower case (based on case of dictionary)

Step-4 Then, find out the initial character and

number of characters

 Step-5 Set flag as per table-1

 Step-6 check flag is-
 00 or 01 then, set NC= number of consecutive

spaces/ newlines and discard CS, Ic and Pos field

10 then set NC= number of special characters and

discard CS field

11then, check

 If NC is less than 3, then,

 Set field CS, Pos and discard Ic field.

 If NC is equal to greater than 3, than

 set NC= number of characters in word

and also set each bit of CS field as per case

sensitivity of character (1 for upper and 0 for

lower) also set Ic flag with initial character

and Pos to position of word in dictionary

Step-7 Write compressed word in file.

Step-8 Read next word till End of File and goto step-1

Note: If special character (like comma, hyphen, etc) is

encountered followed by white space, then it is

considered as an end of the word. This word special

character followed by white space is considered as a

two character word and will be stored in dictionary for

special character word.

Decompression of compressed word:

The data which is compressed by above mention

scheme decompressed by following steps-

Step-1 Read the compressed data from compressed

file

Step-2 Check the flag bit combination, if F is-

00 or 01 then, Put NC number of consecutive

 spaces/ newlines as per table-1

10 then, put the word which is at the

 location of Pos in dictionary against main

 index (Ic field) and sub index (NC).

 11 then, Check

If NC is less than 3, than,

Find the word of index NC at

 position Pos of dictionary and

 convert the characters of word to

 upper or lower case as per CS bits

If NC is equal to greater than 3, than

Find the word at position Pos of

sub index (NC) of index (Ic) and

convert the characters of word

to upper or lower case as per
CS bits

Step-3 Write appropriate word: word[Ic][NC] into

the file

Step-4 Read next compressed word till End of File

and goto step-1

IV. RESULT

Compression result of the text file poem.txt using

proposed method and also comparison with other

existing approaches are given below.

poem.txt

Friends are far, friends are near,

Friends will be there to lend an ear,

They listen, laugh, and care,
But most of all, they're always there,

Through thick and thin, up and down,

Your true friends are always around,
For treats, hugs and real big smiles,

They'll travel to you from several miles,

They'll always be there to hold you tight,
Anytime, no matter if it's day or night,

You really know when your friends are sincere,

When they always show up to lend their ear.
 by- Bea Williams

Table-2 Comparison Table

S.

No

Appro

ach

Origin

al Size

Compressed

Size

Compre

ssed %

Compres

sion

Ratio

1 WinRA

R

574 381 33.62 0.6637

2 7Zip 574 425 25.96 0.7404

3 GZip 574 274 52.26 0.4773

4 LZW 574 370 35.54 0.6446

5 Propos

ed

574 298 48.08 0.5191

December 31, 2015

[INTERNATIONAL JOURNAL OF ADVANCED STUDIES IN
COMPUTER SCIENCE AND ENGINEERING

IJASCSE, Volume 4 Issue 12, 2015

www.ijascse.org Page 5

Figure-4 Comparison in terms of compressed size

Figure-5 Comparison in terms of compression percent

Figure-6 Comparison in terms of compression ratio

V. CONCLUSION & FUTURE WORK

It is clearly shows by result that, proposed approach is

better as compare to other non-dictionary based

compression approach. In future, centralized

dictionary can be implemented as self organized

dictionary using artificial intelligence. This approach

can implement in cloud for data storage in

compressed form.

VI. REFERENCES

[1] Md. Ziaul Karim Zia, Dewan Md. Fayzur

Rahman, and Chowdhury Mofizur Rahman,

“Two-Level Dictionary-Based Text

Compression Scheme”, United International

University, Dhanmondi, Dhaka, Bangladesh

Proceedings of 11th International Conference

on Computer and Information Technology

(ICCIT 2008) 25-27 December, 2008, Khulna,

Bangladesh

[2] R. Franceschini, H. Kruse, N. Zhang, R. Iqbal,

and A. Mukherjee, “Lossless, Reversible

Transformations that Improve Text

Compression Ratio”, Project paper, University

of Central Florida, USA. 2000.

[3] F. Awan, N. Zhang, N. Motgi, R. Iqbal, and A.

Mukherjee, “LIPT: A Reversible Lossless Text

Transform to Improve Compression

Performance,” Proceedings IEEE Data

Compression Conference, pp. 481-210, 2001.

[4] P. Sismanoglou and D. Nikolos, “Test Data

Compression based on the Reuse of Parts of the

Dictionary Entries”, 2011 IEEE

[5] Bruno Carpentieri, “Improving Dictionary

Based Data Compression by Using Previous

Knowledge and Interaction”, AMERICAN-

MATH'10 Proceedings of the 2010 American

conference on Applied mathematics.

[6] Jari Heikkinen and Jarmo Takala,

“Programmability in Dictionary-Based

Compression”, online Available:

www.cs.tut.fi move doc ISCAS0 .pdf

[7] Robert Jasku_la, “A Simple Dictionary-Based

Compression Algorithm”, online Available:

http:// www.

davidsalomon.name/DC3advertis/asdba.pdf

[8] N. Jesper Larsson And Alistair Moffat, “Off-

Line Dictionary-Based Compression”,

Proceedings Of The IEEE, Vol. 88, No. 11,

November 2000

[9] Willis Lang, Michael Morse, Jignesh M. Patel,

“Dictionary-Based Compression for Long

Time-Series Similarity”, IEEE Transaction on

Knowledge and Data Engineering November

2010 (vol. 22 no. 11)

[10] Rexline S.J, Robert L, “Dictionary Based

Preprocessing Methods in Text Compression -

A Survey”, International Journal of Wisdom

Based Computing, Vol. 1 (2), August 2011

0

100

200

300

400

500

600

700

WinRAR 7Zip GZip LZW Proposed

Original Size

Compressed Size

0.000

10.000

20.000

30.000

40.000

50.000

60.000

WinRAR 7Zip GZip LZW Proposed

Compress %

Compress %

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

WinRAR 7Zip GZip LZW Proposed

Compression Ratio

Compression Ratio

