
International Journal of advanced studies in Computer Science and Engineering
IJASCSE Volume 4, Issue 10, 2015

www.ijascse.org Page 16

Oct. 31

Network-on-Chip with load balancing based on

interleave of flits technique

Marcelo Daniel Berejuck

Electrical Engineering Department

University of Southern Santa Catarina - UNISUL

Florianópolis-SC, Brazil

Abstract—This paper presents the evaluation of a Network-on-

Chip (NoC) that offers load balancing for Systems-on-Chip

(SoCs) dedicated for multimedia applications that require high

traffic ofvariable bitrate communication. The NoC is based on

a technique that allows the interleaving of flits from different

flows in the same communication channel, and keep the load

balancing without a centralized control in the network. For

this purpose, all flits in the network received extra bits, such

that every flit carries routing information. The routers use this

extra information to perform arbitration and schedule the flits

to the corresponding output ports. Analytic comparisons and

experimental data show that the approach adopted in the

network keeps average latency lower for variable bitrate flows

than a network based on resource reservationwhen both
networks are working over 80% of offered load.

Keywords: Network-on-Chip; System-on-Chip; Load balancing;

Multimedia

I. INTRODUCTION

Deploying real-time applications on modern System-on-
Chip (SoC) mandate that the designer ensure performance
and temporal guarantees. Note that modern SoC platforms
typically consist of multiple processors, and a
communication interconnect between them. With the need
to integrate an increasing variety of processing units,
communication management becomes critical when an
interconnect fabric must support highly diversified functions
with varying latency and bandwidth requirements. Network-
on-Chip (NoC) is one solution of interconnect fabric adopted
by silicon industry to connect dozens of processing units
heterogeneous resources [3].

NoCs can be designed to provide communication
services with guarantees on throughput and latency for flows
in the network, or offering best-effort communication service
with no guarantees on latency and bandwidth for them.
Flows related to real-time tasks usually receive such services
with guarantees on throughput and latency. The prevailing
design strategy to produce interconnects with guarantees for
such SoCs relies on mapping the requirements of the
communication flows, related to real-time tasks, to available
network resources at early design stages.

On the other hand, multimedia flows are treated as Best-
Effort (BE) flows. Best-effort services usually are designed
focus on improvement of average latency. Hence, BE flows

are prone to network congestion what has a negative effect
on network load balancing, and on its performance, as well

[5]. BE flows experience the resulting performance
degradation as an increase of latency and loss of bandwidth.
Thus, networks with BE service should have a load
balancing strategy to avoid congestion.

Most of the techniques adopted so far for best-effort
flows, and as a consequence for multimedia flows, usually
rely on the global knowledge of the network state. Some
authors state that without global knowledge of the network
state, such a strategy can never assert that the network does
not reach a congested state [5], and hence, can be impossible
to ensure load balancing in the network. However, the
knowledge of the network state cannot be possible for SoC
based on NoC that works with variable bitrate in its
communication channels.

Nevertheless, after over a decade developing industrial
Telecom and multimedia projects, we realized that many
applications in this domain work with variable bitrate in the
communication channels. They would profit better from a
NoC that could optimize the load balancing. During the last
decade, few works addressed load balancing on Network-on-
Chip. The strategy adopted by all of them was based on
getting information about the network state at run-time, to
deal with the load balancing.

This paper introduces a different strategy to deal with the
load balancing for SoCs based on Network-on-Chip with
high traffic ofvariable bitrate in the communication channels.
It is based on the hypothesis that the load balancing could be
improved at design-time for those SoCs, even without
checking the network state. The focus was 2D mesh
networks. The evaluated NoC architecture, called
RTSNoC[18], is based on the interleaving of flits from
different flows in the same communication channel between
routers. To identify those flits, extra bits were added for all
of them, such that every flit carries routing information. The
evaluation of the RTSNoC demonstrates that the average
latency for best-effort flows with variable bitrate in the
communication channels of the network is improved when
the network is under high traffic. It also demonstrates that
the RTSNoC latency can be consistently predicted for each
flow in the network without requiring resource reservation.

The remainder of this paper is organized as follows: in
Section II we outline the strategies for 2D mesh networks
based on information about the network state at run-time

International Journal of advanced studies in Computer Science and Engineering
IJASCSE Volume 4, Issue 10, 2015

www.ijascse.org Page 17

Oct. 31

adopted by other authors, and that were introduced so far.
Section III presents RTSNoC architecture and introduces its
components. Section III introduces the concept of
interleaving of flits and a definition for latency in NoCs.
Section IV-B introduces the analytic expression of worst-
case latency (WCL) on RTSNoC. Section V introduces the
experimental results, and Section VI closes the paper with
our conclusion.

II. RELATED WORK

This Section briefly introduces the strategies based on the
measurement of the network state at run-time, proposed by
other authors. We understand that this overview will help to
differentiate between these strategies and the design-time
strategy we have adopted, and will be introduced in Section
III.

The first work we are introducing in this Section belongs
to the authors [1]. They proposed a strategy for load
balancing in NoCs based on link utilization. The strategy is
based on communication service level called Congestion-
Controlled Best-Effort (CCBE) that allows control of offered
load based on critical shared resource utilization
measurements. They use the link utilization as a congestion
measure. Such measurements are performed by hardware
probes and are carryout to a controller by guaranteed service
connections in the NoC to assure that this communication is
not subject to congestion. The path from the controller to the
processing unit to communicate the computed loads can be
implemented in a similar way. The controller, a Model
Predictive Controller (MPC), determines the appropriate
loads for the CCBE connections. The method introduced by
those authors requires that routing in the NoC cannot be
dynamic.

The authors [2] introduced a flow control scheme for
best-effort traffic in NoC based on source rate utility
maximization. They did a model of the flow control as a
utility-based maximization problem, which is constrained by
link capacities. Those authors assumed that the guaranteed
services in the NoC are being preserved at the desired level,
and rate allocation of best-effort sources is the main role of
the optimization problem. The strategy adopted was to
regulate the best-effort source rates with a solution of the
optimization problem. It was led to an iterative algorithm
that can be used to determine optimal BE source rates and
thereby as a means to control the congestion of the NoC. A
centralized controller can implement the proposed algorithm.

The technique based on a distributed hardware and
software congestion control was proposed by [4]. The
proposed system is composed of two NoCs: a data network
and a control network. The first one is a network with virtual
cut-through switching for application data traffic, and the
second one is a specialized network for control and
distributed Operating System (OS) services, such as
controlling the traffic shaping parameters. These OS
services are implemented on small microcontrollers, and
included in the network interfaces of the control network.
Those authors have introduced Regional Congestion
Awareness (RCA), which exploits non-local and local
congestion information. The technique adopts a lightweight

monitoring network that aggregates and transmits metrics of
congestion throughout the network so that each router has a
better picture of network hotspots.

Authors [7] proposed a technique based on Ant Colony
Optimization (ACO) that was inspired by the related
research on the behavior of real-world ant colony. ACO-
based adaptive routing has been applied to achieve load
balancing with historical information. However, the cost of
the ACO network pheromone table is too high, and this
overhead grows fast with the scaling of NoC. To fix this
problem, those authors proposed a Regional ACO-based
routing (RACO) with static and dynamic regional table
forming technique to reduce the cost of the table, share
pheromone information, and adopt a lookahead model for
further load balancing.

Note that all strategies described above are based on
some measurement of the network state. The authors [4]
proposed a distributed hardware and software congestion
control. The authors [1] proposed load balancing in based on
link utilization, and [2] suggested a flow control scheme
based on source utility maximization. Finally, a Regional
ACO-based routing with static and dynamic regional table
forming technique was the solution suggested by those
authors [7]. We summarize these works in Table I,
highlighting the main features of them.

TABLE I. SUMMARY OF TECHNIQUES FOR LOAD BALANCING ON

NETWORK-ON-CHIP.

 Year Technique Strategy

[4] 2006 Distributed hardware and
software congestion

control.

Composed of two NoCs: data
and control.

[1] 2007 Load balancing based on
link utilization.

Control of offered load based
on critical shared resource
utilization measured.

[2] 2007 Flow control scheme
based on source rate

maximization.

Regulates best-effort source
rate with the solution of the
optimization problem.

[7] 2010 Technique based on Ant
Colony Optimization

(ACO)

Network pheromone tables.

III. RTSNOC ARCHITECTURE

Similarly to the networks presented in the previous
Section, the major guideline behind the design of RTSNoC is
prevent traffic congestion of the flows in the networks, and
keep fair the access of these flows to the communication
channels. Differently from them, however, RTSNoC was
conceived for highly dynamic scenarios and therefore
strategies based on resource reservation were ruled out in
favor of deterministic scheduling. The basic idea is to
embody each flit with routing and scheduling information so
that routing is performed flit-by-flit based solely on
information locally available at each router in a way that
preserves the determinism of the worst-case latency for each
path.

The additional overhead of carrying routing information
along with each flit does not exceed the amount of resources
“wasted” on reservation-based networks. For example, an
increase of silicon consumption due to the growing number

International Journal of advanced studies in Computer Science and Engineering
IJASCSE Volume 4, Issue 10, 2015

www.ijascse.org Page 18

Oct. 31

of bits used to address the routers in the network was in
average 0.3%; meanwhile the consumption grows in average

up to 4.0% when the Data field size of the flit changes from
16 bits to 256 bits[18].

A. Network concept

The adoption of a routing algorithm and an arbiter that
allows alternately access to the router output port ensure
predictability for all flows in the network without reservation
of network resources, and thereby we focused on finding
techniques to turn it feasible. To achieve that goal, the
following four assumptions were taken into account:

 The routing is done flit-by-flit and made fairly
among the flows that are competing for a
communication channel;

 Arbiters must grant priority to flits coming from
distant routers;

 To minimize the competition for communication
channels between routers, up to eight
communication channels are available for each
router, to explore the sense of locality; and

 Since the routing is done flit-by-flit, the buffers are
placed only on the end points, minimizing the side
effect of growing on silicon area.

A key element of RTSNoC design is flit-by-flit routing.
Since every flit carries along its destination address,
arbitration can be implemented locally on each router for
each of its output ports. If there are several packets being
routed through the same link, the arbiter will alternate access
to the corresponding output port so that each flow gets to
forward one flit at a time. Hence, the flits from different
packets are interleaved in the network. Conversely, circuit-
based or wormhole-routing networks would block the output
port at least until the end of a packet. Additionally, the flit-
level, interleave of flits routing strategy of RTSNoC largely
simplifies buffering: routers only have to implement a single-
flit buffer for each output port.

B. Routing and arbiter algorithms

Routing of flits is performed using the XY routing
algorithm, which ensures in-order, deadlock-free delivery for
2-D orthogonal networks [19][20]. Since there is only one
routing path1 for the communication between any two cores
in the network, the flits from a packet are delivered at the
destination in the same order that they have been injected at
the origin.

Each output channel of RTSNoC's router has its own
“arbiter” to receive and manage the requests generated by the
routing controllers at the input channels (Figure 1). The
arbiter is similar to the weighted round-robin scheduling
algorithm. When the system starts, each channel receives a
different priority level. The highest priorities are given to

the channels NN, SS, EE, and WW, since they are used to
interconnect other routers in a 2-D regular mesh network, as

1

Flits are always routed first in the X-axis, and subsequently in the Y-axis.

depicted in Figure 2. Any flit has its routing request attended
if it has the highest priority, or if there are no other requests

in the arbiter. Priority channels NN, SS, EE, and WWmight
send more than one flit sequentially. The amount of flits that
a priority channel may send sequentially is related to the
amount of requests that may happen at the same time on
these priority channels.

Figure 1. Block diagram showing the internal structure of the router.

Figure 2shown an example where five cores (gray

circles numbers 1, 2, 3, and 4) are sending packets (arrows
σ1, σ2, σ3, and σ4) to the same destination node (black circle,

number 5). Channel EE of router 0 has priority to send up to

2 flits sequentially, and channel SS of router 2 has priority
to send up to three flits.

Figure 2. Example of priority channels.

Once the request is attended, the channel that requested
the sending of a flit receives the lowest routing priority level
and may only send other flits if there is no other flit waiting
for routing. The exceptions are the priority channels when
used as interconnection between routers. In this case,
counters with the priorities are decremented, and the lower

priority will grant when they reach value 0.
RTSNoC adopts a 2-D orthogonal topology compatible

with the XY routing algorithm. Its routers can be configured
at synthesis-time to feature from five to eight interconnection
ports. By convention, ports are named after the cardinal

NW NN

SS SE

NE

SW

WW EE

INPUT
INTERFACE

OUTPUT
INTERFACE

FLOW
CONTROL

ARBITER

ROUTING
CONTROLLER

TO CROSSBAR

FROM CROSSBAR

ALLOCATOR

CROSSBAR
SWITCH8 8

8

8

2

NN

SS

WW EE

NE

SE

NW

SW

3

NN

SS

WW EE

NE

SE

NW

SW

0

NN

SS

WW EE

NE

SE

NW

SW

1

NN

SS

WW EE

NE

SE

NW

SW

5

1

2

3

σ
2

σ
1

σ
2

σ
1

σ
3

4

σ
4

International Journal of advanced studies in Computer Science and Engineering
IJASCSE Volume 4, Issue 10, 2015

www.ijascse.org Page 19

Oct. 31

points and can be connected either to a core or to another
router in order to build larger networks.

We understand that the complexity of some elements in
a router grows exponentially with the number of ports, but
we had empirical evidence that the “placement” of the cores
in the network plays a major role in real applications. We
therefore decided to support up to eight ports per router, thus
enabling designers to connect cores that will communicate
more intensively with each other on the same router, forming
clusters as those shown in

Figure 3. This design also reduces average the number
of hops in the network, which in turn reduces the average
communication latency.

Figure 3. A regular mesh NoC with 4 routers and 24 cores.

IV. LATENCY ANALYSIS

This Section introduces latency basic concepts with a
view to making clear how the interleaving-of-flits method
can be suitable to improve the average latency for variable
bitrate flows that compete for the same communication
channel.

As mentioned earlier, NoCs adopted in real-time
platforms must ensure guarantees on latency for individual
core-to-core communication in the network. The latency of
the network is the time required for a packet to traverse the
network, from the time the header of the packet arrives at the
input channel to the time the tail of the packet departs the
output channel [16]. The latency can be separated into two
components:

in which Lis the packet latency, Th is the time required
for the header of the packet to traverse the network and

is the time for the packet of length F to cross a channel

with bandwidth b. In absence of contention, header latency
might be seen as the sum of two factors determined by the
topology: router delay and number of routers in a path
between origin and destination. Based on these two factors,
the Eq. (1) can be re-written as follows:

in which is the number of hops in the path and is

the router delay. For simplicity, we do not include in the Eq.

(1) and (2) the wire delay across the physical channel, even
not the distance from the source and destination of a packet.

Let us suppose that there are three requests to send
packets through the same communication channel at
instant , as shown in Figure 4-a, and the sequence of

scheduling for those requests on instant is packet 1,

packet 2, and packet 3. We define “Interleave of
flits” the method in which the packets from all requests are
broken into flits, and these flits have been sending through
the channel, one flit from each packet at a time. The
interleaving of flits for this example is shown in Figure 4-b
and a wormhole switching of those packets is shown in
Figure 4-c.

Figure 4. Example of interleave of flits in the same channels.

Note that the time to traverse the channel for the

packet 3 using interleave of flits is (t3–t0), which is
lower than the time spent in the wormhole switching. It
means that the smaller size packets have better average
latency when the method of interleave of flits is used, while
bigger size packets have their average latency increased.

This is a trade-off when the interleave of flits is adopted.
The method is suitable for the systems on which short
packets must have their average latency improved, despite
the growing in the number of bigger packets that might
happen in he network. Recalls that the systems addressed in

this paper have flows with variable bitrate, and packets 1, 2,

and 3 depicted in the example above eventually have
different sizes along the time. These were characteristics we
noticed on the industrial R&D projects carried out in the last
decade. One example of these projects is presented in
Section V-C, on which real-time flows with variable bitrate
compete for the same network resources.

t
0

Packet 1

Packet 2

Packet 3

t
1

t
2

t
3

t
0

t
1

t
2

t
3

t
0

(a)

(b)

(c)

International Journal of advanced studies in Computer Science and Engineering
IJASCSE Volume 4, Issue 10, 2015

www.ijascse.org Page 20

Oct. 31

As we mentioned in Section I, multimedia applications
usually aretreated as best-effort flows on NoCs due to silicon
consumption issues.For best-effort networks, the
communication channels are shared by several flows. We did
simulations with the Equation (2) for two hypothetical
networks: one network with best-effort support and another
one based on interleaving of flits. We have adopted as
assumption that the best-effort NoC was implemented with a
round-robin arbiter and wormhole switching. The latency for
a flow σi was calculated according the following equation:

in which |b-boccupied| is the bandwidth available for the

flow under analysis σi, taking into account that boccupiedof

the whole bandwidth b has been used by other flows (offered
traffic). Remember that for the wormhole switching, if a
packet requests a communication channel that is being used
by another packet, it must wait for another packet finish the
transmission and release the resource communication
channel before it starts its transmission.

The expression of latency for a hypothetical network
based on the interleave of flits must take into account that
there is no resources reservation in the network such happen
for wormhole switching, and the flits from a packet may be
interleaved with flits from other packets. Hence, the header

latency must consider that N packets might compete at
each router in the path, from its origin up to its destination

(). It means that, under the latency point of view, the

packet size grows Ntimes. Thus, the expression of latency is
given as follows:

A simulation of a SoC using these hypothetical networks
was done based on the equations (3) and (4). It was done
considering the following conditions:

 The number of routers in the path under analysis,

for both networks, is 4;

 The router delay is the same for both networks, with

the value 3;

 There are three packets requesting the same
resources for both networks. One of them, called σi,

is the packet under analysis with fixed size of 100
flits, and the other two packets have variable sizes,

from 0 up to 64k flits.

Figure 5 depicts the results generated by the simulation
with Equation (3) (gray color), and Equation (4) (black
color). As expected, the latency for σiwas the same, when no

other flows request the same resources (offered traffic = 0).
With other two flows competing for the same resources, the

latency for σi in the NoC based on interleave of flits grows
nearly three times; however, it keeps constant up to the
maximum bandwidth usage. On the other hand, the latency

of σi in the best-effort network has grown when the offered

load to the network is nearly 70%, as a result of network
congestion for that flow under analysis. The result for
interleave network was expected because the latency
depends on the number of flits of the flow under analysis,
and the number of flows that request the same resources, as
shown in Equation (4).

Figure 5. Simulation of interleaving for hypothetical BE network and the

network based on interleaving of flits.

Similar result was introduced by[1], as shownFigure

6.The Figure shows network latency of a best-effort

connection as a function of offered traffic measured for a

single connection in a ᴁthereal NoC. The graph shows that

latency is small and almost constant up to a certain turning

point after which the latency grows steeply. This point is

nearly at 75% of the offered load, before saturate.In that
example, the latency saturates at 2600ns because queuing

between processing units and network interfaces is not taken

into account by the authors.

Figure 6. Network latency of an ᴁthereal BE connection as a function

of offered load. Reference:[1].

Based on the information exposed above, we understand

that the method of interleave of flits can reduce the average
latency for the variable bitrate platform mentioned in
SectionI. Next Subsection introduces the WCL analytic
model of the NoC we proposing in this paper.

A. WCL analysis

This Subsection introduces the additional latency that a
NoC contributes to the execution time of the program

International Journal of advanced studies in Computer Science and Engineering
IJASCSE Volume 4, Issue 10, 2015

www.ijascse.org Page 21

Oct. 31

instructions. The impact of NoC on the communication
latency among the cores is depicted for the networks
introduced in Section II. These results are based on the
survey published by [8] and used in our paper as a reference.
Similar analysis in RTSNoC is introduced, after the analysis
over the other NoCs, followed by a benchmark relating these
networks.

Essentially, there are four distinguished types of
network accesses in terms of the amount of data to be
transferred: read/write of single-word transactions or
read/write of block transactions. The execution time of a
transaction involving a network access includes the time

spent traversing the network (Tnoc) and the time spent

accessing the remote core (Tcore):

 (Tcore) depends on the characteristics of the cores
connected in the network. A transaction through the network
may include up to three different delays. One delay is related
to the time waiting before getting access to the network

(Twait;req). Another delay is related to the transaction

request sent through the network (Treq). Finally, a reply
should be send back, depending on the case, that would also
require some waiting time for gaining access to the network

(Twait;reply) and some time to transfer the reply through

network (Treply), back to the requesting node. In general,
the contribution of the network to the latency of a transaction
may be given by:

 Equation (6) is a general expression and may be
adapted according the type of transaction in the network.

B. WCL analysis on RTSNoC

The worst-case latency for a packet that belongs to a

flow σi in the RTSNoC network is defined as the sum of the
latency experienced by all flits that belong to the same
packet, on the path between an origin node and destination

node with h routers. Our analysis for the WCL for packets in
RTSNoC is based on the Equation (1) introduced in Section
IV. The packet latency can be separated into two
components: the time required for the header of the packet to

traverse the network and the time for a packet of length F to

cross the channel with bandwidth b.
The first flit of a packet in the RTSNoC is the header

flit, and it may has a different latency than other flits of the
same packet. It happens because once the first flit reach the
destination node, than the other flits subsequent to it will be
routing with the priorities established by the first flit in the
path. Thereby, if there are no changes on other flows, then
the payload and tail flits will have the same latency, that
might be different from header flit.

The first latency analyzed in this Section is related to

header flit. First, let us use as reference the bandwidth bwith

one flit per clock cycle. Second, the latency to forward a flit
from an input channel to an output channel is two clock

cycles in the RTSNoC router [18]. If N flows are competing
for the same output channel in a router, then one of their flits
is granted at each arbitration cycle. Hence, the maximum

latency expected for the header flit, Lheader that belongs to a

packet from the flow σi is given by the following expression:

Let's take into account the following assumptions: (i)
the payload flits will be routing with the same priorities
established by the header flit on routers in the path between
the origin node and destination node, and (ii) all of the flows
than might compete for the same resources are sending their
packets to the same destination. Hence, the latency of
payload and tail flit is given as following:

in which k is the number of packets from other nodes
in the whole network that are competing for the same

destination node in the network and f is the amount of flits
of the analyzed packet. From the expressions (7) and (8) is
possible to find out the worst-case latency for any packet in
the RTSNoC network, as following:

in which B is the buffer size at network interfaces
(FIFO memories). The buffer size was multiplied by two
because we are considering that is possible that both
memories might be not empty with other flits, even in the
origin node interface as in the destination node interface.

Note that the parameters in Eq. (9) are well known.
Recall that the XY algorithm, implemented in the routers, is
a static algorithm and imposes all flits that belong to the
same packet must be routing by a unique path. Due to this

algorithm's pattern, the maximum value of N will always be
the same because the number of cores and routers in the path

are fixed. The parameter k is also well known due to the size
of the network, and hence is possible to presume the
maximum number of flows from other nodes in the whole
network that might compete for the same destination node.

Furthermore, the parameter B is defined at compilation time

and the parameter f is know by origin node. It means that
the hard real-time flows designed considering the absolute
WCL of RTSNoC will always meet the requirements of the
associated hard real-time tasks, so no deadline can be lost
due to network contention.

International Journal of advanced studies in Computer Science and Engineering
IJASCSE Volume 4, Issue 10, 2015

www.ijascse.org Page 22

Oct. 31

V. EXPERIMENTAL RESULTS

A. Evaluation of WCL and throughput

This Section introduces the results from experiments
done with a RTSNoC network composed by four routers and
synthesized in a FPGA device from Xilinx manufacturer
(XC6VLX75T-3-FF484). The objective was to perform
measurements of latency and throughput, in order to evaluate
the results with the expected theoretical values to this
network. The latency measurement of a packet was done
considering the number of clock cycles since the header flit
is injected in the input channel at origin node, up to the
arrival of the tail flit a the output channel at the destination
node. The network has four routers, called 0, 1, 2, and 3,
depicted by white squares in

Figure 7. Twenty-four cores were connected in the
network and depicted by circles (0 up to 23). Five of them
generate packets to the same destination node. These five
cores, called 3, 7, 13, 18, and 23, are gray circles in

Figure 7, whereas the destination node is the black

circle called 12.

Figure 7. Experimental network with 4 routers and 24 cores.

The packets generated by those five cores have six flits.

Table II shown the flits generated by the cores, where the

header and tail flits have most significant byte as 4h, whereas

payload flits have value 0h. Furthermore, two less significant
bytes of the flits that belong to a packet have values to
distinguish them from other flits. For example, flits that

belong to a packet from flow σi; they have less significant

bytes 3Xh, in whichX means the number of the flit, such as 1,

2, etc.

TABLE II. PACKETS ADOPTED TO EVALUATE THE WCL AND

THROUGHPUT.

Flit type Packets per flow

σ3 σ7 σ13 σ18 σ23

Header 40831h 40871h 408D1h 408E1h 408F1h

Payload

00832h 00872h 008D2h 008E2h 008F2h

00833h 00873h 008D3h 008E3h 008F3h

00834h 00874h 008D4h 008E4h 008F4h

00835h 00875h 008D5h 008E5h 008F5h

Tail 40836h 40876h 408D6h 408E6h 408F6h

The latency and throughput measurement were done on

flit generated by core 7, according two assumptions: (i) cores
3, 13, 18, and 23 generate packets all the time, and (ii) core 7
generates only one packet on which the latency and
throughput measurements are done.

Figure 8 depicts the results from the simulation tool
ISim, from Xilinx manufacturer. The experiments were done
with a clock frequency of 100MHz, such that clock cycles
have 10 ns. The header was injected in the input channel of
router 1 on the falling edge of clock (i_CLK) as shown in

Figure 8 by a letter A and a dashed square. The header
flit was delivered after twelve falling edges of clock at the

output channel of router 2, where the core 12 was connected

(letter B and a dashed square).

Figure 8. Experimental network with 4 routers and 24 cores.

RTSNoC adopts XY routing, and hence all flits

generated by the core 7 follow the path across routers 1→0

→2. The header flit took two clock cycles to be routed in

router 1 because there were not competition for the same

output channel on that router. The flit took four clock

cycles to be routed in router 1, due to the competition with

flits from core 3. Finally, the header flit took six clock

cycles to be delivered on output channel where core 12
were connected, due to the competition with flits from

cores 13 and 3 (also received in channel SS of that

2

12

1317

3

18

1923

0 1

2

13

9

810

16

4

15

5

14 22 21

6110

20

7

(header) (tail)

D E

A B C

International Journal of advanced studies in Computer Science and Engineering
IJASCSE Volume 4, Issue 10, 2015

www.ijascse.org Page 23

Oct. 31

router). Remember that this is the theoretical worst-case
latency. We did several simulations and measurements
with different latency values. However, the latency
measured for header flit depicted in

Figure 8 was the worst-case.

Equation (9) allows us to find out the theoretical value
of latency for the packet shown in

Figure 8. We are considering that the reading process
of flits is done as soon as the flits are delivered to the
destination node and without buffer overflow in the
network interfaces. Thereby, the latency contribution of

2B is zero in Equation (9) and the theoretical value of
WCL is:

Note that the latency to deliver the packet was sixty-
two clock cycles: twelve for the header flit and fifty for the
other flits. In this experiment, we found out the timing to
reach the theoretical worst-case latency; other
experiments, as expected, gave us lower values and never
bigger than WCL. Furthermore, the flits were delivered in
the same sequence that they were injected in the origin
node. It was expected since the XY algorithm,
implemented in the routers, is a static algorithm and
imposes all flits that belong to the same packet to be
routing by a unique path.

Figure 8 also shown that the interval between D and E,
when a flit is delivered, has two clock cycles, and this is
the throughput mentioned earlier.

B. Latency evaluation

This Subsection introduces two simulations that were
done using the expression of latency for RTSNoC given in
Equation (9) and the expected latency for BE flows in the
Æthereal network. Two factors guide us to choose
Æthereal network as reference to this evaluation. First, it is
one of most cited networks on scientific papers related to
NoC2. Second, it offers best-effort services allowing the
flows treated as BE to use reserved, but unused, time slots
time slots to improve the throughput of these flows.

The latency for the Æthereal network was calculated
using the Equation 3, in which the bandwidth was based
on the throughput expression published in the Survey
written by [8]:

 (11)

For Equation (11), p is the number of time slots
assigned to a virtual circuit, n is the number of packets in a

transaction, P is the period of time slots in a time schedule

and s is the time slot duration in clock cycles. In
simulations, we have adopted these parameter with values
shown in Table III, and both networks have twenty-three

2

Information available at www.ieeexplore.com.

cores. We have considered that Æthereal network support
one processing unit per router, and hence, the maximum
path for it is eight hops (5 × 5 mesh network); meanwhile
RTSNoC with twenty-three processing units has four
routers and two hops as maximum path (2 × 2 mesh
network). For the simulations we have considered the
following assumptions:

 There are three critical flows in the Æthereal
network;

 There are four time slots in the network, and three
of them were allocated for each critical flow;

 Two simulations were done for Æthereal
network. In the first simulation, we are
considering that each critical flow uses 60% of its
time slot, and the BE flows can use the remaining
40%. For the second one, we are considering that
BE flows can use only the time slot reserved for
them;

 There are three packets requesting the same
resources for both networks. One of them, called

σi, is the packet under analysis with fixed size of

9 flits, and the other two packets have variable

sizes, from 0 up to 64k flits; and

 A single time slot from Æthereal has the same
bandwidth than a RTSNoC channel.

The assumptions above were chosen because they are
quite close to the real cases we have been investigating,
such the case study that will be introduced in Subsection
V-C.

TABLE III. PARAMETER LIST ADOPTED FOR THE LATENCY

SIMULATIONS CONSIDERING EIGHT HOPS PER NETWORK.

Parameter Value

n 1

f 9

p 1

P 4

s 1

Figure 9depicts the simulation results. Black curves are

related to Æthereal simulations, and the gray ones are
related to minimum and maximum latency expected for
the flow σi in the RTSNoC network. Note that Æthereal
network with allocation of unused GS time slots has best
performance, in terms of latency and congestion limit than
the another one that uses only the BE time slot. RTSNoC
has better load balancing for offered traffic over than 70%,
when compared with an Æthereal network with exclusive
best effort time slots. Meanwhile, the load balancing on
RTSNoC is better for a offered traffic over than 80% when
compared with Æthereal that support BE flows in unused
GS time slots.

International Journal of advanced studies in Computer Science and Engineering
IJASCSE Volume 4, Issue 10, 2015

www.ijascse.org Page 24

Oct. 31

Figure 9. Expected latency vs. offered traffic for Æthereal and RTSNoC

networks.

The results depicted in Figure 9 allow us to argue that

RTSNOC achieved its goal offering better load balancing
for high traffic in the network. It means that RTSNoC is
suitable for full bandwidth usage; otherwise, other
solutions might have lower latency.

C. Case study - PABX

We experimentally evaluate RTSNoC by deploying an
industrial application of a Private Automatic Branch
eXchange (PABX), which we call the PABX SoC. This
equipment is an example of a system with variable bitrate
that, usually, works over 60% of its maximum load in the
communication channels among the cores that compose
it.According the manufacturer, if the PABX equipment is
under a high traffic of phone call procedures, the deadline
loss of flows might affect the overall quality of the PABX
system. Furthermore, the quality perception might be an
important issue for some users.

1) PABX SoC structure:

The PABX SoC targets FPGA-
basedtelecommunication systems with the following
necessary features to implement the digital PABX:

 One single tone Hz generator;

 One Dual-Tone Multi-Frequency (DTMF)
generator;

 One conference switch;

 One DTMF detector;

 One interface to E1 link;

 One subscriber interface with support for
thirty-three subscribers;

 One VoIP (acronym of Voice over Internet
Protocol) interface;

 One single tone detector; and

 One Time-Division Multiplexing (TDM) bus
synchronization core.

The original implementation of this SoC is shown in
Figure 10-a. The traditional TDM communication was

replaced by the RTSNoC in this SoC, as shown in

Figure 10-b. Other equipment, such as E1 call
generator, telephone equipment and external hardware for
subscriber were used in the experiment but we will not
detail them in this document.

Figure 10. PABX structure: (a)block diagram showing the original

structure of PABX SoC based on TDM; and (b) block diagram showing

the PABX SoC using RTSNoC as interconnection for the cores.

2) PABX implementation and results
We synthesize the PABX SoC using Xilinx‟s ISE

version 13.1 targeting a Virtex 6 FPGA. To analyze the
maximum operating load, we generate thirty telephone
calls on E1 link, and transmit it to the Subscribers
interface. The incoming calls are randomly generated with
short durations. For each incoming call, the PABX cores
exchange messages related to call identification, DTMF
signal generation and detection, and call forwardingfurther
the voice. Based on the characteristics of the PABX SoC,
we compute the WCL of the packets, which results in a
worst-case latency of 420 ns.

We measure the latency across the network on the

PABX SoC received shows the latency variation of
synchronization packets received at the single tone
detector, which placement was done at NW port of an
RTSNoC router (Figure 11). It was chosen due to its
simplicity to check possible distortions related to
synchronization issues. Our measurements showed the
latency variations of packet transmission from 288 − 317
ns, which is less than the WCL of 420 ns, i.e. the average
latency was 28% lower than the WCL. Furthermore, the
WCL rarely was achieved, and never was bigger than 420
ns.

VoIP
Interface

Single
Tones

Detector

Subscriber
Interface

DTMF
Detector

TDM
PLL

Synchronizer

Single
Tones

Generator

E1
Interface

DTMF
Generator

Conference
Switch

TDM Bus

VoIP
Interface

Single
Tones

Detector

Subscriber
Interface

DTMF
Detector

Single
Tones

Generator

E1
Interface

DTMF
Generator

Conference
Switch

RTSNoC
Network

(a)

(b)

International Journal of advanced studies in Computer Science and Engineering
IJASCSE Volume 4, Issue 10, 2015

www.ijascse.org Page 25

Oct. 31

Figure 11. Latency of synchronization packets at port NW.

VI. CONCLUSION

This paper presented the design and evaluation of a
Network-on-Chip that offers load balancing for SoCs
dedicated for applications that require variable bitrate
communication. The design was based on a connectionless
strategy on which flits from different communication
flows are interleaved in the same communication channel.
Each flit carries routing information that is used by routers
to perform arbitration and scheduling of the corresponding
output ports to balance channel utilization.

Despite the growing on silicon consumption caused by
the adopted strategy, experiment‟s result demonstrates in
Subsection V-B that the average latency is kept lower the
WCL boundary when the offered traffic is higher than
80%, what does not happen on regular BE schemes. We
also analytically demonstrate in Subsection IV-B that real-
time flows designed considering the absolute WCL of
RTSNOC will always meet the requirements of flows
associated with real-time tasks so that no deadline can be
lost due to network contention.

Based on the results introduced in this paper, we

understand that RTSNoC is a suitable solution for SoCs
based on Network-on-Chip that demand for load balancing
when the network is under high traffic of variable bitrate
flows. For low traffic of variable bitrate, a regular BE
scheme can be better in terms of average latency. The
experiments also have validated our hypothesis, mentioned
in Section I, that the load balancing could be improved at
design-time for these SoCs with high traffic of variable
bitrate flows, and without check the network state at
running time.

REFERENCES

[1] VandenBrand,J.W.andCiordas,C.andGoossens,K.andBasten,T.,„Cong

estion-ControlledBest-EffortCommunication for Networks-on-Chip‟,
Design, Automation Test in Europe Conference Exhibition, 2007, pp.

1 - 6.

[2] Talebi, M.S. and Jafari, F. and Khonsari, A, „A Novel Flow Control
Scheme for Best Effort Traffic in NoC Based on Source Rate Utility

Maximization‟, 15th International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication

Systems (MASCOTS), 2007, Oct, pp. 381 - 386.

[3] Atienza, D., Angiolini, F., Murali, S., Pullini, A., Benini, L., De
Micheli, G., „Network-on-Chip design and synthesis outlook.‟, The

VLSI journal, Elsevier, 2008, 41, pp. 340 - 359.

[4] Marescaux, T., Rngevall, A., Nollet, V., Bartic, A. and Corporaa,H.,
„Distributed Congestion Control for Packet Switched Networks on

Chip.‟, Proceedings of the International Conference ParCo, 2006,
(33), pp. 761 - 768.

[5] Yang et al., „A taxonomy for congestion control algorithms in packet

switching networks.‟, IEEE Network, 1995, (9).

[6] Gratz, P., Grot, B. and Keckler, S.W., „Regional congestion
awareness for load balance in networks-on-chip.‟, High Performance

Computer Architecture, 2008. HPCA 2008. IEEE 14th International
Symposium on, 2008, Feb, pp. 203 - 214.

[7] Hsien-Kai,H.,En-Jui,C.,Chih-Hao,C.andAn-Yeu,W.,„Regional ACO-
based routing for load-balancingin NoC systems‟, Nature and

Biologically Inspired Computing (NaBIC), 2010 Second World
Congress on, 2010, Dec, pp. 370 - 376.

[8] T-CREST Project - Seventh Framework Program for research and

technological development (FP7), „Survey of time-predictable NoCs
and their WCET analysis.‟, http://www.t-crest.org/page/results,

accessed Dec. 2012.

[9] Dally, W. J., and Aoki, H. Aoki., „Deadlock-Free Adaptive Routing
in Multicomputer Networks Using Virtual Channels.‟, IEEE

Transactions on Parallel and Distributed Systems, 1993, 4(4), pp.
466-475.

[10] Kim, J., Park, D, Theocharides, T, Vijaykrishnan, N, and Das, C.R.,

„A Low Latency Router Supporting Adaptivity for On-Chip

Interconnects.‟, International Conference on Design Automation,
2005, pp. 559 564.

[11] Singh, A., Dally, W. J., Gupta, A. K., Towles, B., „GOAL: A Load-

Balanced Adaptive Routing Algorithm for Torus Networks.,
International Symposium on Computer Architecture, 2003, pp. 194-

205.

[12] Singh, A., Dally, W. J., Towles, B., and Gupta, A. K., „Globally
Adaptive Load-Balanced Routingon Tori.‟, IEEE Computer

Architecture Letters, 2004, 3(1).

[13] Goossens, K., Dielissen, J., Radulescu, A., „Æthereal Network on
Chip: Concepts, Architectures, and Implementations.‟, IEEE Des.

Test, 2005, 22, (5), pp. 414 - 421.

[14] Goossens, K. and Hansson, A., „The AEthereal network on chip after
ten years: Goals, evolution, lessons, and future.‟, Design Automation

Conference (DAC), 2010 pp 306311.

[15] Low, S.H. and Lapsley, D.E., „Optimization flow control. I. Basic

algorithm and convergence.‟, Networking, IEEE/ACM Transactions,
1999, Dec, v. 7, n. 6, pp. 861 - 874.

[16] Dally, W.; Towles, B., „Principles and Practices of Interconnection

Networks.‟, Morgan-Kayfmann, 2004.

[17] Dehyadgari, Nickray, Afzali-Kusha e Navabi., Evaluation of pseudo
adaptive XY routing using an object oriented model for NOC.

Microelectronics, ICM, 2005.

[18] Berejuck, M. D., Frohlich, A. A., Evaluation of silicon consumption
for a connectionless Network-on-Chip, International Journal of

advanced studies in Computer Science and Engineering IJASCSE
V.3, I.11, November, (2014).

[19] Duato, J. and Yalamanchili, S., Ni, L., Interconnection Networks,

Morgan-Kayfmann, (2002).

[20] Dehyadgari, Nickray, Afzali-Kusha e Navabi, Evaluation of pseudo
adaptive XY routing using an object oriented model for NOC,

Microelectronics, ICM, (2005).

