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Abstract—This paper presents the evaluation of a Network-on-

Chip (NoC) that offers load balancing for Systems-on-Chip 

(SoCs) dedicated for multimedia applications that require high 

traffic ofvariable bitrate communication. The NoC is based on 

a technique that allows the interleaving of flits from different 

flows in the same communication channel, and keep the load 

balancing without a centralized control in the network. For 

this purpose, all flits in the network received extra bits, such 

that every flit carries routing information. The routers use this 

extra information to perform arbitration and schedule the flits 

to the corresponding output ports. Analytic comparisons and 

experimental data show that the approach adopted in the 

network keeps average latency lower for variable bitrate flows 

than a network based on resource reservationwhen both 
networks are working over 80% of offered load. 

Keywords: Network-on-Chip; System-on-Chip; Load balancing; 

Multimedia 

I. INTRODUCTION 

Deploying real-time applications on modern System-on-
Chip (SoC) mandate that the designer ensure performance 
and temporal guarantees.  Note that modern SoC platforms 
typically consist of multiple processors, and a 
communication interconnect between them.  With the need 
to integrate an increasing variety of processing units, 
communication management becomes critical when an 
interconnect fabric must support highly diversified functions 
with varying latency and bandwidth requirements. Network-
on-Chip (NoC) is one solution of interconnect fabric adopted 
by silicon industry to connect dozens of processing units 
heterogeneous resources [3].    

NoCs can be designed to provide communication 
services with guarantees on throughput and latency for flows 
in the network, or offering best-effort communication service 
with no guarantees on latency and bandwidth for them. 
Flows related to real-time tasks usually receive such services 
with guarantees on throughput and latency. The prevailing 
design strategy to produce interconnects with guarantees for 
such SoCs relies on mapping the requirements of the 
communication flows, related to real-time tasks, to available 
network resources at early design stages.  

On the other hand, multimedia flows are treated as Best-
Effort (BE) flows. Best-effort services usually are designed 
focus on improvement of average latency. Hence, BE flows 

are prone to network congestion what has a negative effect 
on network load balancing, and on its performance, as well  
 
[5]. BE flows experience the resulting performance 
degradation as an increase of latency and loss of bandwidth. 
Thus, networks with BE service should have a load 
balancing strategy to avoid congestion.   

Most of the techniques adopted so far for best-effort 
flows, and as a consequence for multimedia flows, usually 
rely on the global knowledge of the network state. Some 
authors state that without global knowledge of the network 
state, such a strategy can never assert that the network does 
not reach a congested state [5], and hence, can be impossible 
to ensure load balancing in the network. However, the 
knowledge of the network state cannot be possible for SoC 
based on NoC that works with variable bitrate in its 
communication channels. 

Nevertheless, after over a decade developing industrial 
Telecom and multimedia projects, we realized that many 
applications in this domain work with variable bitrate in the 
communication channels.  They would profit better from a 
NoC that could optimize the load balancing.  During the last 
decade, few works addressed load balancing on Network-on-
Chip.  The strategy adopted by all of them was based on 
getting information about the network state at run-time, to 
deal with the load balancing. 

This paper introduces a different strategy to deal with the 
load balancing for SoCs based on Network-on-Chip with 
high traffic ofvariable bitrate in the communication channels. 
It is based on the hypothesis that the load balancing could be 
improved at design-time for those SoCs, even without 
checking the network state. The focus was 2D mesh 
networks. The evaluated NoC architecture, called 
RTSNoC[18], is based on the interleaving of flits from 
different flows in the same communication channel between 
routers. To identify those flits, extra bits were added for all 
of them, such that every flit carries routing information.  The 
evaluation of the RTSNoC demonstrates that the average 
latency for best-effort flows with variable bitrate in the 
communication channels of the network is improved when 
the network is under high traffic. It also demonstrates that 
the RTSNoC latency can be consistently predicted for each 
flow in the network without requiring resource reservation.   

The remainder of this paper is organized as follows: in 
Section II we outline the strategies for 2D mesh networks 
based on information about the network state at run-time 



International Journal of advanced studies in Computer Science and Engineering 
IJASCSE Volume 4, Issue 10, 2015 

www.ijascse.org Page 17 
 

Oct. 31 

adopted by other authors, and that were introduced so far. 
Section III presents RTSNoC architecture and introduces its 
components. Section III introduces the concept of 
interleaving of flits and a definition for latency in NoCs. 
Section IV-B introduces the analytic expression of worst-
case latency (WCL) on RTSNoC. Section V introduces the 
experimental results, and Section VI closes the paper with 
our conclusion. 

II. RELATED WORK 

This Section briefly introduces the strategies based on the 
measurement of the network state at run-time, proposed by 
other authors.  We understand that this overview will help to 
differentiate between these strategies and the design-time 
strategy we have adopted, and will be introduced in Section 
III.   

The first work we are introducing in this Section belongs 
to the authors [1]. They proposed a strategy for load 
balancing in NoCs based on link utilization. The strategy is 
based on communication service level called Congestion-
Controlled Best-Effort (CCBE) that allows control of offered 
load based on critical shared resource utilization 
measurements. They use the link utilization as a congestion 
measure. Such measurements are performed by hardware 
probes and are carryout to a controller by guaranteed service 
connections in the NoC to assure that this communication is 
not subject to congestion. The path from the controller to the 
processing unit to communicate the computed loads can be 
implemented in a similar way. The controller, a Model 
Predictive Controller (MPC), determines the appropriate 
loads for the CCBE connections. The method introduced by 
those authors requires that routing in the NoC cannot be 
dynamic.   

The authors [2] introduced a flow control scheme for 
best-effort traffic in NoC based on source rate utility 
maximization. They did a model of the flow control as a 
utility-based maximization problem, which is constrained by 
link capacities.  Those authors assumed that the guaranteed 
services in the NoC are being preserved at the desired level, 
and rate allocation of best-effort sources is the main role of 
the optimization problem. The strategy adopted was to 
regulate the best-effort source rates with a solution of the 
optimization problem. It was led to an iterative algorithm 
that can be used to determine optimal BE source rates and 
thereby as a means to control the congestion of the NoC. A 
centralized controller can implement the proposed algorithm. 

The technique based on a distributed hardware and 
software congestion control was proposed by [4]. The 
proposed system is composed of two NoCs: a data network 
and a control network. The first one is a network with virtual 
cut-through switching for application data traffic, and the 
second one is a specialized network for control and 
distributed Operating System (OS) services, such as 
controlling the traffic shaping parameters.  These OS 
services are implemented on small microcontrollers, and 
included in the network interfaces of the control network. 
Those authors have introduced Regional Congestion 
Awareness (RCA), which exploits non-local and local 
congestion information.  The technique adopts a lightweight 

monitoring network that aggregates and transmits metrics of 
congestion throughout the network so that each router has a 
better picture of network hotspots.   

Authors [7] proposed a technique based on Ant Colony 
Optimization (ACO) that was inspired by the related 
research on the behavior of real-world ant colony.  ACO-
based adaptive routing has been applied to achieve load 
balancing with historical information.  However, the cost of 
the ACO network pheromone table is too high, and this 
overhead grows fast with the scaling of NoC.  To fix this 
problem, those authors proposed a Regional ACO-based 
routing (RACO) with static and dynamic regional table 
forming technique to reduce the cost of the table, share 
pheromone information, and adopt a lookahead model for 
further load balancing.   

Note that all strategies described above are based on 
some measurement of the network state. The authors [4] 
proposed a distributed hardware and software congestion 
control. The authors [1] proposed load balancing in based on 
link utilization, and [2] suggested a flow control scheme 
based on source utility maximization. Finally, a Regional 
ACO-based routing with static and dynamic regional table 
forming technique was the solution suggested by those 
authors [7].  We summarize these works in Table I, 
highlighting the main features of them. 

TABLE I.  SUMMARY OF TECHNIQUES FOR LOAD BALANCING ON 

NETWORK-ON-CHIP. 

 Year Technique Strategy 

[4] 2006 Distributed hardware and 
software congestion 

control. 

Composed of two NoCs: data 
and control. 

[1] 2007 Load balancing based on 
link utilization. 

Control of offered load based 
on critical shared resource 
utilization measured. 

[2] 2007 Flow control scheme 
based on source rate 

maximization. 

Regulates best-effort source 
rate with the solution of the 
optimization problem. 

[7] 2010 Technique based on Ant 
Colony Optimization 

(ACO) 

Network pheromone tables. 

 

III. RTSNOC ARCHITECTURE 

Similarly to the networks presented in the previous 
Section, the major guideline behind the design of RTSNoC is 
prevent traffic congestion of the flows in the networks, and 
keep fair the access of these flows to the communication 
channels.  Differently from them, however, RTSNoC was 
conceived for highly dynamic scenarios and therefore 
strategies based on resource reservation were ruled out in 
favor of deterministic scheduling.  The basic idea is to 
embody each flit with routing and scheduling information so 
that routing is performed flit-by-flit based solely on 
information locally available at each router in a way that 
preserves the determinism of the worst-case latency for each 
path.    

The additional overhead of carrying routing information 
along with each flit does not exceed the amount of resources 
“wasted” on reservation-based networks. For example, an 
increase of silicon consumption due to the growing number 
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of bits used to address the routers in the network was in 
average 0.3%; meanwhile the consumption grows in average 

up to 4.0% when the Data field size of the flit changes from 
16 bits to 256 bits[18]. 
 

A. Network concept 

The adoption of a routing algorithm and an arbiter that 
allows alternately access to the router output port ensure 
predictability for all flows in the network without reservation 
of network resources, and thereby we focused on finding 
techniques to turn it feasible. To achieve that goal, the 
following four assumptions were taken into account:    

 The routing is done flit-by-flit and made fairly 
among the flows that are competing for a 
communication channel;   

 Arbiters must grant priority to flits coming from 
distant routers;   

 To minimize the competition for communication 
channels between routers, up to eight 
communication channels are available for each 
router, to explore the sense of locality; and 

 Since the routing is done flit-by-flit, the buffers are 
placed only on the end points, minimizing the side 
effect of growing on silicon area.  
 

A key element of RTSNoC design is flit-by-flit routing. 
Since every flit carries along its destination address, 
arbitration can be implemented locally on each router for 
each of its output ports.  If there are several packets being 
routed through the same link, the arbiter will alternate access 
to the corresponding output port so that each flow gets to 
forward one flit at a time.  Hence, the flits from different 
packets are interleaved in the network.  Conversely, circuit-
based or wormhole-routing networks would block the output 
port at least until the end of a packet.  Additionally, the flit-
level, interleave of flits routing strategy of RTSNoC largely 
simplifies buffering: routers only have to implement a single-
flit buffer for each output port.     

B. Routing and arbiter algorithms 

Routing of flits is performed using the XY routing 
algorithm, which ensures in-order, deadlock-free delivery for 
2-D orthogonal networks [19][20].   Since there is only one 
routing path1 for the communication between any two cores 
in the network, the flits from a packet are delivered at the 
destination in the same order that they have been injected at 
the origin.   

Each output channel of RTSNoC's router has its own 
“arbiter” to receive and manage the requests generated by the 
routing controllers at the input channels (Figure 1). The 
arbiter is similar to the weighted round-robin scheduling 
algorithm. When the system starts, each channel receives a 
different priority level.  The highest priorities are given to 

the channels NN, SS, EE, and WW, since they are used to 
interconnect other routers in a 2-D regular mesh network, as 

                                                        
1

Flits are always routed first in the X-axis, and subsequently in the Y-axis. 

depicted in Figure 2.  Any flit has its routing request attended 
if it has the highest priority, or if there are no other requests 

in the arbiter.  Priority channels NN, SS, EE, and WWmight 
send more than one flit sequentially. The amount of flits that 
a priority channel may send sequentially is related to the 
amount of requests that may happen at the same time on 
these priority channels.   

 
Figure 1. Block diagram showing the internal structure of the router. 

 
Figure 2shown an example where five cores (gray 

circles numbers 1, 2, 3, and 4) are sending packets (arrows 
σ1, σ2, σ3, and σ4) to the same destination node (black circle, 

number 5). Channel EE of router 0 has priority to send up to 

2 flits sequentially, and channel SS of router 2 has priority 
to send up to three flits. 

 

 
Figure 2. Example of priority channels. 

 
 

Once the request is attended, the channel that requested 
the sending of a flit receives the lowest routing priority level 
and may only send other flits if there is no other flit waiting 
for routing.  The exceptions are the priority channels when 
used as interconnection between routers. In this case, 
counters with the priorities are decremented, and the lower 

priority will grant when they reach value 0.   
RTSNoC adopts a 2-D orthogonal topology compatible 

with the XY routing algorithm.  Its routers can be configured 
at synthesis-time to feature from five to eight interconnection 
ports.  By convention, ports are named after the cardinal 
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points and can be connected either to a core or to another 
router in order to build larger networks.    

We understand that the complexity of some elements in 
a router grows exponentially with the number of ports, but 
we had empirical evidence that the “placement” of the cores 
in the network plays a major role in real applications.  We 
therefore decided to support up to eight ports per router, thus 
enabling designers to connect cores that will communicate 
more intensively with each other on the same router, forming 
clusters as those shown in  

Figure 3. This design also reduces average the number 
of hops in the network, which in turn reduces the average 
communication latency. 

 

 
 

Figure 3. A regular mesh NoC with 4 routers and 24 cores. 

IV. LATENCY ANALYSIS 

This Section introduces latency basic concepts with a 
view to making clear how the interleaving-of-flits method 
can be suitable to improve the average latency for variable 
bitrate flows that compete for the same communication 
channel.   

As mentioned earlier, NoCs adopted in real-time 
platforms must ensure guarantees on latency for individual 
core-to-core communication in the network. The latency of 
the network is the time required for a packet to traverse the 
network, from the time the header of the packet arrives at the 
input channel to the time the tail of the packet departs the 
output channel [16]. The latency can be separated into two 
components:   

in which Lis the packet latency, Th is the time required 
for the header of the packet to traverse the network and 

is the time for the packet of length F to cross a channel 

with bandwidth b. In absence of contention, header latency 
might be seen as the sum of two factors determined by the 
topology: router delay and number of routers in a path 
between origin and destination. Based on these two factors, 
the Eq. (1) can be re-written as follows:   

in which  is the number of hops in the path and  is 

the router delay. For simplicity, we do not include in the Eq. 

(1) and (2) the wire delay across the physical channel, even 
not the distance from the source and destination of a packet.   

Let us suppose that there are three requests to send 
packets through the same communication channel at 
instant , as shown in Figure 4-a, and the sequence of 

scheduling for those requests on instant  is packet 1, 

packet 2, and packet 3. We define “Interleave of 
flits” the method in which the packets from all requests are 
broken into flits, and these flits have been sending through 
the channel, one flit from each packet at a time.  The 
interleaving of flits for this example is shown in Figure 4-b 
and a wormhole switching of those packets is shown in 
Figure 4-c. 

 

 
Figure 4. Example of interleave of flits in the same channels. 

 
Note that the time to traverse the channel for the 

packet 3 using interleave of flits is (t3–t0), which is 
lower than the time spent in the wormhole switching. It 
means that the smaller size packets have better average 
latency when the method of interleave of flits is used, while 
bigger size packets have their average latency increased.   

This is a trade-off when the interleave of flits is adopted. 
The method is suitable for the systems on which short 
packets must have their average latency improved, despite 
the growing in the number of bigger packets that might 
happen in he network. Recalls that the systems addressed in 

this paper have flows with variable bitrate, and packets 1, 2, 

and 3 depicted in the example above eventually have 
different sizes along the time. These were characteristics we 
noticed on the industrial R&D projects carried out in the last 
decade. One example of these projects is presented in 
Section V-C, on which real-time flows with variable bitrate 
compete for the same network resources. 
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As we mentioned in Section I, multimedia applications 
usually aretreated as best-effort flows on NoCs due to silicon 
consumption issues.For best-effort networks, the 
communication channels are shared by several flows. We did 
simulations with the Equation (2) for two hypothetical 
networks: one network with best-effort support and another 
one based on interleaving of flits. We have adopted as 
assumption that the best-effort NoC was implemented with a 
round-robin arbiter and wormhole switching. The latency for 
a flow σi was calculated according the following equation: 

in which |b-boccupied| is the bandwidth available for the 

flow under analysis σi, taking into account that boccupiedof 

the whole bandwidth b has been used by other flows (offered 
traffic). Remember that for the wormhole switching, if a 
packet requests a communication channel that is being used 
by another packet, it must wait for another packet finish the 
transmission and release the resource communication 
channel before it starts its transmission.   

The expression of latency for a hypothetical network 
based on the interleave of flits must take into account that 
there is no resources reservation in the network such happen 
for wormhole switching, and the flits from a packet may be 
interleaved with flits from other packets. Hence, the header 

latency  must consider that N packets might compete at 
each router in the path, from its origin up to its destination 

( ). It means that, under the latency point of view, the 

packet size grows Ntimes. Thus, the expression of latency is 
given as follows:  

A simulation of a SoC using these hypothetical networks 
was done based on the equations (3) and (4). It was done 
considering the following conditions:   

 The number of routers in the path under analysis, 

for both networks, is 4;   

 The router delay is the same for both networks, with 

the value 3; 

 There are three packets requesting the same 
resources for both networks. One of them, called σi, 

is the packet under analysis with fixed size of 100 
flits, and the other two packets have variable sizes, 

from 0 up to 64k flits. 
 

Figure 5 depicts the results generated by the simulation 
with Equation (3) (gray color), and Equation (4) (black 
color). As expected, the latency for σiwas the same, when no 

other flows request the same resources (offered traffic = 0). 
With other two flows competing for the same resources, the 

latency for σi in the NoC based on interleave of flits grows 
nearly three times; however, it keeps constant up to the 
maximum bandwidth usage. On the other hand, the latency 

of σi in the best-effort network has grown when the offered 

load to the network is nearly 70%, as a result of network 
congestion for that flow under analysis. The result for 
interleave network was expected because the latency 
depends on the number of flits of the flow under analysis, 
and the number of flows that request the same resources, as 
shown in Equation (4).  

 

 
Figure 5. Simulation of interleaving for hypothetical BE network and the 

network based on interleaving of flits. 

 
Similar result was introduced by[1], as shownFigure 

6.The Figure shows network latency of a best-effort 

connection as a function of offered traffic measured for a 

single connection in a ᴁthereal NoC. The graph shows that 

latency is small and almost constant up to a certain turning 

point after which the latency grows steeply. This point is 

nearly at 75% of the offered load, before saturate.In that 
example, the latency saturates at 2600ns because queuing 

between processing units and network interfaces is not taken 

into account by the authors. 
 

 
Figure 6. Network latency of an ᴁthereal BE connection as a function 

of offered load. Reference:[1]. 

 
 
Based on the information exposed above, we understand 

that the method of interleave of flits can reduce the average 
latency for the variable bitrate platform mentioned in 
SectionI. Next Subsection introduces the WCL analytic 
model of the NoC we proposing in this paper. 

 

A. WCL analysis 

This Subsection introduces the additional latency that a 
NoC contributes to the execution time of the program 
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instructions.  The impact of NoC on the communication 
latency among the cores is depicted for the networks 
introduced in Section II. These results are based on the 
survey published by [8] and used in our paper as a reference. 
Similar analysis in RTSNoC is introduced, after the analysis 
over the other NoCs, followed by a benchmark relating these 
networks.   

Essentially, there are four distinguished types of 
network accesses in terms of the amount of data to be 
transferred: read/write of single-word transactions or 
read/write of block transactions.  The execution time of a 
transaction involving a network access includes the time 

spent traversing the network (Tnoc) and the time spent 

accessing the remote core (Tcore):   

 (Tcore) depends on the characteristics of the cores 
connected in the network. A transaction through the network 
may include up to three different delays. One delay is related 
to the time waiting before getting access to the network 

(Twait;req). Another delay is related to the transaction 

request sent through the network (Treq). Finally, a reply 
should be send back, depending on the case, that would also 
require some waiting time for gaining access to the network 

(Twait;reply) and some time to transfer the reply through 

network (Treply), back to the requesting node.  In general, 
the contribution of the network to the latency of a transaction 
may be given by:  

 Equation (6) is a general expression and may be 
adapted according the type of transaction in the network.   

 

B. WCL analysis on RTSNoC 

The worst-case latency for a packet that belongs to a 

flow σi in the RTSNoC network is defined as the sum of the 
latency experienced by all flits that belong to the same 
packet, on the path between an origin node and destination 

node with h routers. Our analysis for the WCL for packets in 
RTSNoC is based on the Equation (1) introduced in Section 
IV. The packet latency can be separated into two 
components: the time required for the header of the packet to 

traverse the network and the time for a packet of length F to 

cross the channel with bandwidth b.   
The first flit of a packet in the RTSNoC is the header 

flit, and it may has a different latency than other flits of the 
same packet. It happens because once the first flit reach the 
destination node, than the other flits subsequent to it will be 
routing with the priorities established by the first flit in the 
path. Thereby, if there are no changes on other flows, then 
the payload and tail flits will have the same latency, that 
might be different from header flit.   

The first latency analyzed in this Section is related to 

header flit. First, let us use as reference the bandwidth bwith 

one flit per clock cycle. Second, the latency to forward a flit 
from an input channel to an output channel is two clock 

cycles in the RTSNoC router [18]. If N flows are competing 
for the same output channel in a router, then one of their flits 
is granted at each arbitration cycle. Hence, the maximum 

latency expected for the header flit, Lheader that belongs to a 

packet from the flow σi is given by the following expression: 
 

Let's take into account the following assumptions: (i) 
the payload flits will be routing with the same priorities 
established by the header flit on routers in the path between 
the origin node and destination node, and (ii) all of the flows 
than might compete for the same resources are sending their 
packets to the same destination. Hence, the latency of 
payload and tail flit is given as following:   

in which k is the number of packets from other nodes 
in the whole network that are competing for the same 

destination node in the network and f is the amount of flits 
of the analyzed packet. From the expressions (7) and (8) is 
possible to find out the worst-case latency for any packet in 
the RTSNoC network, as following:   

in which B is the buffer size at network interfaces 
(FIFO memories). The buffer size was multiplied by two 
because we are considering that is possible that both 
memories might be not empty with other flits, even in the 
origin node interface as in the destination node interface.   

Note that the parameters in Eq. (9) are well known. 
Recall that the XY algorithm, implemented in the routers, is 
a static algorithm and imposes all flits that belong to the 
same packet must be routing by a unique path. Due to this 

algorithm's pattern, the maximum value of N will always be  
the same because the number of cores and routers in the path 

are fixed. The parameter k is also well known due to the size 
of the network, and hence is possible to presume the 
maximum number of flows from other nodes in the whole 
network that might compete for the same destination node. 

Furthermore, the parameter B is defined at compilation time 

and the parameter f is know by origin node. It means that 
the hard real-time flows designed considering the absolute 
WCL of RTSNoC will always meet the requirements of the 
associated hard real-time tasks, so no deadline can be lost 
due to network contention.    
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V. EXPERIMENTAL RESULTS 

A. Evaluation of WCL and throughput 

This Section introduces the results from experiments 
done with a RTSNoC network composed by four routers and 
synthesized in a FPGA device from Xilinx manufacturer 
(XC6VLX75T-3-FF484). The objective was to perform 
measurements of latency and throughput, in order to evaluate 
the results with the expected theoretical values to this 
network.   The latency measurement of a packet was done 
considering the number of clock cycles since the header flit 
is injected in the input channel at origin node, up to the 
arrival of the tail flit a the output channel at the destination 
node. The network has four routers, called 0, 1, 2, and 3, 
depicted by white squares in  

Figure 7. Twenty-four cores were connected in the 
network and depicted by circles (0 up to 23). Five of them 
generate packets to the same destination node. These five 
cores, called 3, 7, 13, 18, and 23, are gray circles in  

Figure 7, whereas the destination node is the black 

circle called 12. 
 

 
 

Figure 7. Experimental network with 4 routers and 24 cores. 

 
The packets generated by those five cores have six flits. 

Table II shown the flits generated by the cores, where the 

header and tail flits have most significant byte as 4h, whereas 

payload flits have value 0h. Furthermore, two less significant 
bytes of the flits that belong to a packet have values to 
distinguish them from other flits. For example, flits that 

belong to a packet from flow σi; they have less significant 

bytes 3Xh, in whichX means the number of the flit, such as 1, 

2, etc. 

TABLE II.  PACKETS ADOPTED TO EVALUATE THE WCL AND 

THROUGHPUT. 

Flit type Packets per flow 

σ3 σ7 σ13 σ18 σ23 

Header 40831h 40871h 408D1h 408E1h 408F1h 

Payload 

00832h 00872h 008D2h 008E2h 008F2h 

00833h 00873h 008D3h 008E3h 008F3h 

00834h 00874h 008D4h 008E4h 008F4h 

00835h 00875h 008D5h 008E5h 008F5h 

Tail 40836h 40876h 408D6h 408E6h 408F6h 

 
The latency and throughput measurement were done on 

flit generated by core 7, according two assumptions: (i) cores 
3, 13, 18, and 23 generate packets all the time, and (ii) core 7 
generates only one packet on which the latency and 
throughput measurements are done.   

Figure 8 depicts the results from the simulation tool 
ISim, from Xilinx manufacturer. The experiments were done 
with a clock frequency of 100MHz, such that clock cycles 
have 10 ns. The header was injected in the input channel of 
router 1 on the falling edge of clock (i_CLK) as shown in  

Figure 8 by a letter A and a dashed square. The header 
flit was delivered after twelve falling edges of clock at the 

output channel of router 2, where the core 12 was connected 

(letter B and a dashed square). 

 

 
 

Figure 8. Experimental network with 4 routers and 24 cores. 

 
 

RTSNoC adopts XY routing, and hence all flits 

generated by the core 7 follow the path across routers 1→0

→2. The header flit took two clock cycles to be routed in 

router 1 because there were not competition for the same 

output channel on that router. The flit took four clock 

cycles to be routed in router 1, due to the competition with 

flits from core 3. Finally, the header flit took six clock 

cycles to be delivered on output channel where core 12 
were connected, due to the competition with flits from 

cores 13 and 3 (also received in channel SS of that 
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router). Remember that this is the theoretical worst-case 
latency. We did several simulations and measurements 
with different latency values. However, the latency 
measured for header flit depicted in  

Figure 8 was the worst-case. 
 

Equation (9) allows us to find out the theoretical value 
of latency for the packet shown in 

Figure 8. We are considering that the reading process 
of flits is done as soon as the flits are delivered to the 
destination node and without buffer overflow in the 
network interfaces. Thereby, the latency contribution of 

2B is zero in Equation (9) and the theoretical value of 
WCL is: 

Note that the latency to deliver the packet was sixty-
two clock cycles: twelve for the header flit and fifty for the 
other flits. In this experiment, we found out the timing to 
reach the theoretical worst-case latency; other 
experiments, as expected, gave us lower values and never 
bigger than WCL. Furthermore, the flits were delivered in 
the same sequence that they were injected in the origin 
node. It was expected since the XY algorithm, 
implemented in the routers, is a static algorithm and 
imposes all flits that belong to the same packet to be 
routing by a unique path.  

Figure 8 also shown that the interval between D and E, 
when a flit is delivered, has two clock cycles, and this is 
the throughput mentioned earlier. 

 

B. Latency evaluation 

This Subsection introduces two simulations that were 
done using the expression of latency for RTSNoC given in 
Equation (9) and the expected latency for BE flows in the 
Æthereal network. Two factors guide us to choose 
Æthereal network as reference to this evaluation. First, it is 
one of most cited networks on scientific papers related to 
NoC2. Second, it offers best-effort services allowing the 
flows treated as BE to use reserved, but unused, time slots 
time slots to improve the throughput of these flows. 

The latency for the Æthereal network was calculated 
using the Equation 3, in which the bandwidth was based 
on the throughput expression published in the Survey 
written by [8]: 

                (11) 

 

For Equation (11), p is the number of time slots 
assigned to a virtual circuit, n is the number of packets in a 

transaction, P is the period of time slots in a time schedule 

and s is the time slot duration in clock cycles. In 
simulations, we have adopted these parameter with values 
shown in Table III, and both networks have twenty-three 

                                                        
2

Information available at www.ieeexplore.com. 

cores. We have considered that Æthereal network support 
one processing unit per router, and hence, the maximum 
path for it is eight hops (5 × 5 mesh network); meanwhile 
RTSNoC with twenty-three processing units has four 
routers and two hops as maximum path (2 × 2 mesh 
network). For the simulations we have considered the 
following assumptions: 

 There are three critical flows in the Æthereal 
network; 

 There are four time slots in the network, and three 
of them were allocated for each critical flow; 
 

 Two simulations were done for Æthereal 
network. In the first simulation, we are 
considering that each critical flow uses 60% of its 
time slot, and the BE flows can use the remaining 
40%. For the second one, we are considering that 
BE flows can use only the time slot reserved for 
them; 

 There are three packets requesting the same 
resources for both networks. One of them, called 

σi, is the packet under analysis with fixed size of 

9 flits, and the other two packets have variable 

sizes, from 0 up to 64k flits; and 

 A single time slot from Æthereal has the same 
bandwidth than a RTSNoC channel. 

The assumptions above were chosen because they are 
quite close to the real cases we have been investigating, 
such the case study that will be introduced in Subsection 
V-C. 

TABLE III.  PARAMETER LIST ADOPTED FOR THE LATENCY 

SIMULATIONS CONSIDERING EIGHT HOPS PER NETWORK. 

Parameter Value 

n 1 

f 9 

p 1 

P 4 

s 1 

 
Figure 9depicts the simulation results. Black curves are 

related to Æthereal simulations, and the gray ones are 
related to minimum and maximum latency expected for 
the flow σi in the RTSNoC network. Note that Æthereal 
network with allocation of unused GS time slots has best 
performance, in terms of latency and congestion limit than 
the another one that uses only the BE time slot. RTSNoC 
has better load balancing for offered traffic over than 70%, 
when compared with an Æthereal network with exclusive 
best effort time slots. Meanwhile, the load balancing on 
RTSNoC is better for a offered traffic over than 80% when 
compared with Æthereal that support BE flows in unused 
GS time slots. 
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Figure 9. Expected latency vs. offered traffic for Æthereal and RTSNoC 

networks. 

 
The results depicted in Figure 9 allow us to argue that 

RTSNOC achieved its goal offering better load balancing 
for high traffic in the network. It means that RTSNoC is 
suitable for full bandwidth usage; otherwise, other 
solutions might have lower latency.  
 

C. Case study - PABX 

We experimentally evaluate RTSNoC by deploying an 
industrial application of a Private Automatic Branch 
eXchange (PABX), which we call the PABX SoC. This 
equipment is an example of a system with variable bitrate 
that, usually, works over 60% of its maximum load in the 
communication channels among the cores that compose 
it.According the manufacturer, if the PABX equipment is 
under a high traffic of phone call procedures, the deadline 
loss of flows might affect the overall quality of the PABX 
system. Furthermore, the quality perception might be an 
important issue for some users.  

 

1) PABX SoC structure:   
 

The PABX SoC targets FPGA-
basedtelecommunication systems with the following 
necessary features to implement the digital PABX:  

 One single tone Hz generator; 

 One Dual-Tone Multi-Frequency (DTMF) 
generator; 

 One conference switch; 

 One DTMF detector; 

 One interface to E1 link; 

 One subscriber interface with support for 
thirty-three subscribers; 

 One VoIP (acronym of Voice over Internet 
Protocol) interface; 

 One single tone detector; and 

 One Time-Division Multiplexing (TDM) bus 
synchronization core. 

 
The original implementation of this SoC is shown in  
Figure 10-a. The traditional TDM communication was 

replaced by the RTSNoC in this SoC, as shown in  

Figure 10-b. Other equipment, such as E1 call 
generator, telephone equipment and external hardware for 
subscriber were used in the experiment but we will not 
detail them in this document. 

 
 

Figure 10.  PABX structure: (a)block diagram showing the original 

structure of PABX SoC based on TDM; and (b) block diagram showing 

the PABX SoC using RTSNoC as interconnection for the cores. 

 

2) PABX implementation and results 
We synthesize the PABX SoC using Xilinx‟s ISE 

version 13.1 targeting a Virtex 6 FPGA. To analyze the 
maximum operating load, we generate thirty telephone 
calls on E1 link, and transmit it to the Subscribers 
interface. The incoming calls are randomly generated with 
short durations. For each incoming call, the PABX cores 
exchange messages related to call identification, DTMF 
signal generation and detection, and call forwardingfurther 
the voice. Based on the characteristics of the PABX SoC, 
we compute the WCL of the packets, which results in a 
worst-case latency of 420 ns.  

 
We measure the latency across the network on the 

PABX SoC received shows the latency variation of 
synchronization packets received at the single tone 
detector, which placement was done at NW port of an 
RTSNoC router (Figure 11). It was chosen due to its 
simplicity to check possible distortions related to 
synchronization issues. Our measurements showed the 
latency variations of packet transmission from 288 − 317 
ns, which is less than the WCL of 420 ns, i.e. the average 
latency was 28% lower than the WCL. Furthermore, the 
WCL rarely was achieved, and never was bigger than 420 
ns. 
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Figure 11.  Latency of synchronization packets at port NW. 

 

VI. CONCLUSION 

This paper presented the design and evaluation of a 
Network-on-Chip that offers load balancing for SoCs 
dedicated for applications that require variable bitrate 
communication. The design was based on a connectionless 
strategy on which flits from different communication 
flows are interleaved in the same communication channel. 
Each flit carries routing information that is used by routers 
to perform arbitration and scheduling of the corresponding 
output ports to balance channel utilization. 

Despite the growing on silicon consumption caused by 
the adopted strategy, experiment‟s result demonstrates in 
Subsection V-B that the average latency is kept lower the 
WCL boundary when the offered traffic is higher than 
80%, what does not happen on regular BE schemes. We 
also analytically demonstrate in Subsection IV-B that real-
time flows designed considering the absolute WCL of 
RTSNOC will always meet the requirements of flows 
associated with real-time tasks so that no deadline can be 
lost due to network contention. 

 
Based on the results introduced in this paper, we 

understand that RTSNoC is a suitable solution for SoCs 
based on Network-on-Chip that demand for load balancing 
when the network is under high traffic of variable bitrate 
flows. For low traffic of variable bitrate, a regular BE 
scheme can be better in terms of average latency. The 
experiments also have validated our hypothesis, mentioned 
in Section I, that the load balancing could be improved at 
design-time for these SoCs with high traffic of variable 
bitrate flows, and without check the network state at 
running time. 
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