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Abstract — Parallelized Adaptive Cipher with Modular 

Arithmetic Transposition and Substitution (PACMATS) is a 

Symmetric Cryptographic Algorithm designed with 

conventional techniques to efficiently utilize parallel 

computing capabilities available today. It is designed to 

overcome the performance inconsistencies prevalent in 

conventional cryptographic algorithms when they are 

implemented in different computing systems with different 

processing capabilities. The size of the key and the plain text 

blocks are each 1024-bits. This algorithm derives the 

adaptive nature from its flexible design in fixing the size of 

the key and plain text sub-blocks and the number of rounds. 

Flow of the algorithm is made dynamic by determining the 

execution steps through each key value at runtime. In spite 

of these advantages PACMATS always produces the same 

cipher text block for a particular plain text block when the 

same key is used. CBC mode along with 2-way and 4-way 

Interleaved CBC modes are employed to overcome this 

problem. The performance of the PACMATS in ECB, CBC 

and ICBC modes are analyzed with implementations in 

shared memory parallel computing environment using 

OpenMP, Java Threads and MPI. 

Keywords : Symmetric Block Cipher, Parallel Adaptive 

Cryptography, Cryptograhic Modes, Modular Arithmetic, 

Transposition, Substitution. 

 

I. INTRODUCTION 
Conventional cryptographic algorithms focus 

only on the complexity of the algorithm and the strength 

and the secrecy of the key [1]. Wide varieties of 

challenges are faced today in efficiently implementing 

these crypto systems as new trends and technologies have 

crept into modern communication and computing 

systems. Conventional symmetric cryptographic 

algorithms such as DES, IDEA, RC6, Blowfish and AES 

are developed before the year 2000 when computers were 

built around single 32, 16 or even 8 bits processors. But 

now, Cryptographic algorithms can be executed much 

faster on modern computers. The present day computing 

systems and that of future are not that of single core 32-

bits desktops, but of multi-cored chips and multiprocessor 

machines whose processing capacities are 64 or 128 or 

more bits. Parallelizing the cryptographic algorithms is 

the only means to utilize these systems productively [2]. 

 

Nowadays there is a sharp increase in the rate of 

encryptions and decryptions carried out per unit time as 

the amount of information exchanged between networks 

have increased exponentially. This imposes overhead in 

the information exchange and causes congestion. A way 

out of this trouble is to develop a new class of parallel 

algorithms that reduce the time required for encryption 

and decryption without diminishing the security strength. 
 

 Cryptographic algorithms are classified as 

Symmetric and Asymmetric Key Algorithms. Symmetric 

key algorithms use only one key and they rely on the 

secure distribution and management of the session key. 

Symmetric key algorithms are divided into stream ciphers 

and block ciphers. Stream ciphers encrypt the bytes of the 

message one at a time but block ciphers take a number of 

bytes and encrypt them as a single unit. In Asymmetric 

Key Algorithms a public key and a private key are used. 

The public key is used to encrypt the information at the 

sending end; whereas the private key is known only to the 

receiver and it is used to decrypt the information [3]. 

Symmetric Block Ciphers are involved in this work. 
 

 Substitution, transposition and modular 

arithmetic techniques are employed in PACMATS. 

Substitution replaces a character by another. Transposition 

permutes the characters in a block of data. Substitution 

causes confusion in a cipher and adds more complexity to 

the algorithm in finding a relationship between the key and 

the cipher text from one side and the key and the plaintext 

in another side. Transposition causes diffusion and makes 

sure that there is no local relationship between the 

statistics of characters in plaintext and ciphertext [4].  

 

 Modular Arithmetic involves the remainder of 

division operation. Addition and multiplication modulo 

operations are reversible and they are involved in 

cryptography. The binary coded value of the plain text is 

added or multiplied with the key, which is a member of the 

set of residues ‘Zm’ to yield a sum or product value. When 

the value obtained is divided with ‘m’ yields a remainder, 

which is the resultant cipher text. Similarly the plain text 

can be retrieved by performing the same operation with the 

cipher text and the additive or multiplicative inverse value 

of the key used [5]. 

 

 Adaptive Cryptography is a trend, which focuses 

on attaining flexibility in the cryptographic 

implementations by dynamically varying the algorithmic 

flow and the choice of the key and the plain-text sub-

blocks. Adaptive Cryptographic techniques can be 

classified as (i) Inter-Algorithmic Adaptive Techniques 

and (ii) Intra-Algorithmic Adaptive Techniques. Inter-

Algorithmic Adaptation is achieved by employing  
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different algorithms [6], whereas Intra-Algorithmic 

Adaptation instills dynamism within the same algorithm. 

Intra-Algorithmic Adaptation is employed in this work. 
 

 Parallel Cryptography is a recent development, 

which deals with implementation of cryptographic 

algorithms in modern parallel computing environments. 

Implicit parallelism uses the inherent resources and 

techniques whereas, explicit parallelism is extracted by 

the external arrangements and codes. Techniques used for 

explicit parallelism can be categorized as (i) Per-

Connection Parallelism (ii) Per-Packet Parallelism and 

(iii) Intra-Packet Parallelism. Per-connection parallelism 

is a method in which each connection is given its own 

thread or process that runs exclusively on one processor. 

The per-connection parallelization method makes no 

attempt to fully utilize modern architectures. In Per-

packet parallelism connections disperse their packet 

processing load over multiple processors, wherein each 

packet is treated individually. Many current algorithms 

lend themselves well to this kind of parallelization, but, 

no cryptographic software implementing this per-packet 

parallelism is available. Intra-packet parallelism is the 

most difficult type of parallelism, as it depends on 

algorithm design. It also requires changes in the 

implementation of the cryptographic algorithm, 

depending no longer on the flexibility of the hardware or 

operating system upon which it is run [2], [7]. Intra-

packet parallelism is employed in PACMATS. 
 

 This paper is planned as follows. Section 2 gives 

the related works, Section 3 depicts the ECB 

implementation of PACMATS, Section 4 gives the CBC 

implementation of PACMATS, Section 5 deals with its 

Interleaved CBC implementations, Section 6 gives the 

Future Scope and Section 7 concludes the paper. 
 

II. RELATED WORKS 

 Efforts to parallelize existing cryptographic 

algorithms have been pursued by many researchers from 

year 2000 onward. The prominent of these efforts can be 

classified broadly as Hardware or Software Parallel 

Cryptographic Implementations involving several 

technical approaches under them as shown in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Parallel Implementation of Existing Block Ciphers 

  

Parallelization with RISC Processors by HoWon Kim et 

al., introduced a special-purpose microprocessor known 

as crypto processor. It had a 32-bit RISC processor block 

and a coprocessor block dedicated to SEED and TDES 

[8]. Pionteck et al., presented a hardware design of AES 

with reconfigurable encryption/ decryption engines which 

supports all key lengths [9]. 

 

An Application-Specific Integrated Circuit 

(ASIC) is an Integrated Circuit customized for a particular 

use. ASICs provide robust operation and much of the 

overhead involved is reduced. The works carried out on 

ASIC implementation of DES, 3DES, IDEA and AES by 

S. Mukherjee et al., T. Ichikawa et al., and B. Weeks et 

al., are prominent in this category [10]-[12]. 
 

Field Programmable Gate Array (FPGA) logic 

cells are reconfigurable platforms that provide low cost, 

high performance implementations of Block Ciphers. 

Several standard algorithms such as DES, TDES, and 

AES are parallelized using FPGAs by Swankoski et al., 

Kotturi, et al., and Chi-Wu, et al. [13]-[15]. 

 

Multi-core Processors and Graphical Processing 

Units (GPUs) are used to parallelize the existing 

Cryptographic algorithms to enhance the performance. 

CUDA programming is used to parallelize algorithms in 

GPU and OpenMP is used to extract parallelism from 

Multi-core Processors [16]-[19]. Praveen Dongara et al., 

implemented several symmetric cryptographic algorithms 

in ECB, CBC and interleaved CBC modes [20]. Similar 

works with CBC and Interleaved CBC modes were also 

carried out on AES by Zadia Codabux-Rossan et al. [21] 

and Ashokkumar et al. [22] 
 

 The most time-consuming elements of source 

code of cryptographic algorithms without including the 

I/O functions are loops, they are parallelized for all the 

popular cryptographic algorithms such as DES, Triple 

DES, IDEA, AES, RC5, Blowfish, GOST and LOK191 

by Burak et al. in standard modes of operations such as 

ECB, CBC, CFB, OFB and CTR modes [23] [24]. 
 

 Even though all the efforts to parallelize the 

existing conventional cryptographic algorithms with 

hardware and software techniques had given better 

results, they cannot be fully parallelized or implemented 

efficiently in present day computing systems. The 

dependency problems and the inability to efficiently 

modularize the sections of the algorithms hover around 

and haunt the parallelization. Thus a path for the new 

class of cryptographic algorithms that is devoid of these 

problems is set in. 
 

III.  ECB IMPLEMENTATION OF PACMATS 

 In our previous work we have developed the 

Parallel Adaptive Cipher with Modular Arithmetic, 

Transposition and Substitution Techniques (PACMATS) 

and implemented it in ECB mode [25]. It is a symmetric  
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block cipher with block length and key size each of 1024 

bits. The sub-block size of key and the plain text is varied 

based on the computing environment used. The flow of the 

algorithm is decided dynamically by the control 

information in the key. The granularity of the algorithm is 

decided by forming sub-blocks of various sizes in the 

range 2
n
 where n=3 to 8. The processing resources 

available and the security strength required are used to 

decide the number of rounds and size of the sub-blocks. 

This is depicted in Figure 2. 

 

 

 

 

 

 

 

 

 

 

Figure 2. General Block Diagram of PACMATS 

Each round has eight stages and the 1024 bits key 
is transformed for use in each stage as depicted in  
Figure 3. In the first stage Addition Modulo 2

8
 operation is 

performed with the key sub-blocks and the plain text sub-
blocks in a pattern decided by the initial and the final bits 
of the key sub-blocks. If both these bits are of same value 
then the operation is performed directly, otherwise the 
plain text bits are reversed before the operation. The key 
bits are rotated right or left by the position decided by the 
value got from the initial ‘l’ bits of each sub-block. Here 
‘l’ takes the value 3 to 8 based on the sub-block size 2

l
.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Stages in each round of PACMATS 

 In the second stage Inter Sub-block transposition 

is done by swapping the odd and even numbered sub-

blocks or by swapping them in the reverse order. 

Following this, exchange manipulation is carried out  

 

between the key sub-blocks. This is achieved by swapping 

the odd numbered sub-blocks with the next higher order 

even numbered sub-blocks or by swapping them in the 

reverse order. In the third stage, addition modulo 

2
16

operation is performed with key and plain text sub-

blocks after dividing the sub-blocks into chunks of 16 bits. 

The Intra sub-block rotation is carried for each key sub-

block based on the key value as it is done before the 

second stage. In the fourth stage intra sub-block 

substitution is carried out with plaintexts and key based on 

the key sub-block values. An inter sub-block rotation is 

performed for the key before the fifth stage and 

multiplication modulo 2
8
+1 operation is performed in the 

fifth stage with plain text sub-blocks further divided into 

chunks of 8-bits based on control information derived 

from the key. Then key manipulation is performed with 

the key sub-blocks as it is done before for the second and 

the fourth stages. In the sixth stage Intra Sub-block 

transposition operation is carried out on the plain text sub-

blocks. The key undergoes exchange sub-block key 

manipulation once again, as it is done just before the third 

stage. In the seventh stage multiplication modulo 2
16

+1 

operation is carried with key and plain text sub-blocks by 

dividing the plaintext sub-blocks into chunks of 16 bits. 

The key bits are then involved in the Intra sub-block 

rotation before they are utilized in the eighth stage. Intra 

sub-block rotation based on the initial few bits of each key 

sub-block is done in the eighth and the final stage. Brief 

algorithmic depiction of PACMATS with single round is 

given below. 
 

Input: 1024 bit plain text block, 1024 bit key block 

Output: ‘n’ blocks of ‘b’ bits 

 

Sub-Block Generation: 

1. Run environment identification routine to identify the 

number of processors/cores ‘p’ data handling 

capacity ‘d’ and clock speed ‘s’ in order to divide the 

key and plaintext into ‘n’ sub-blocks of ‘b’ bits. 

2.  if (p=1&&d<16 bits&&s<=100 MHz) then b=8 bits. 

3.  else if(p==1 && d> =16 bits && d<32 bits && 

s>100 MHz && s<=1000 MHz) then b=16 bits. 

4.  else if(p==1 && d>=32 bits && d<64 bits && 

s>1000 MHz) then b=32 bits. 

5.  else if(p>1 && p<=4 && d>=64 bits && d< 128 

bits && s>2000 MHz ) then b=64 bits. 

6.  else if(p>4 && p<= 12 && d>=128 bits && s>3000 

MHz) then b=128 bits. 

7.  else if(p>12 && d>=128 bits && s>3000 MHz) then 

b=256 bits. 

8.  else display “resources unsuitable to implement 

PACMATS”. 

 

Steps in Single Round execution of PACMATS: 

1. Addition modulo 2
8
 operation. 

2. Intra sub-block key rotation. 

3. Inter sub-block transposition. 

4. Exchange sub-block key manipulation. 
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5. Addition modulo 2
16

 operation. 

6. Intra sub-block key rotation. 

7. Intra sub-block substitution. 

8. Inter sub-block key rotation. 

9. Multiplication modulo 2
8
+1 operation. 

10. Intra sub-block key rotation. 

11. Intra sub-block Transposition. 

12. Exchange sub-block key operation. 

13. Multiplication modulo 2
16

+1 operation. 

14. Intra sub-block key rotation. 

15. Intra sub-block rotation. 
 
 For all normal ECB mode implementation of 
PACMATS in Personal Computers, single round 
execution is sufficient as it provides the required security 
strength. Utilization of inter sub-block and intra sub-block 
transpositions, substitutions and modular arithmetic 
operations makes PACMATS both communication and 
computation intensive for execution in parallel computing 
environments. PACMATS is implemented in shared 
memory architecture using MPI, OpenMP and Java 
Threads programming with different sub-block sizes and 
compared with sequential results. The speedup of various 
combinations of executions are analyzed and compared 
and the results are shown in Table 1. 

 
TABLE I. ECB MODE IMPLEMENTATION OF PACMATS 

SUB-
BLOCK 

SIZE 

SPEEDUP IN ECB MODE OF PACMATS 

MPI OpenMP JAVA Threads 

ENC DEC ENC DEC ENC DEC 

8 bits 2.32 2.36 2.79 2.82 2.63 2.68 

16 bits 2.81 2.85 2.98 3.03 2.88 2.92 

32 bits 3.43 3.47 3.56 3.6 3.49 3.53 

64 bits 3.63 3.67 3.76 3.79 3.66 3.69 

128 bits 3.7 3.73 3.82 3.86 3.75 3.78 

256 bits 3.81 3.84 3.94 3.98 3.86 3.89 

ECB Mode: Electronic Code Book Mode 

ENC : Encryption   DEC : Decryption 

 
 Speedup, throughput, efficiency and cost are the 
metrics popularly used to measure the performance of 
parallel computing systems. This work focuses on single 
encryptions and decryptions to determine the performance. 
Hence, speedup alone is considered to determine the 
performance of PACMATS algorithm. Speedup is the ratio 
of the time taken by the serial implementation of the 
algorithm to that of its parallel implementation. It is 
denoted by Sp = Ts/Tp. Where, ‘Tp’ is the parallel 
execution time and ‘Ts’ is the sequential execution time. 

 
 All the parallel implementations provided similar 
variations in their output. When the sub-block size is kept 
small the speedup is low, but it gradually increased 
linearly when the sub-block size is increased. The 
decryption process provided better speedup than the 
encryption process because most of the values and the 
decisions computed for the encryption stages are made 

available to the decryption stages. A comparative 
representation on the performance of encryption using 
MPI, OpenMP and Java threads are shown in  
Figure. 4 and the decryption is shown in Figure 5. 

 

 

 

 

 

 

 

 

 

 

Figure 4. Performance of ECB mode Encryption of PACMATS 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Performance of ECB mode Decryption of PACMATS 

 
IV.  CBC IMPLEMENTATION OF PACMATS 

 In ECB mode of PACMATS, a plain text block 

always produces the same cipher text block, when the 

same key is used. Cipher Block Chaining (CBC) mode is 

used to overcome this problem. CBC mode ensures that 

even if the same plain text block is repeated again and 

again it yield totally different cipher text blocks in the 

output. In CBC mode result of the encryption of the 

previous block are fed back into the encryption of the 

current block. As there is no feedback available for the 

first block of the plaintext a random block of text known 

as Initialization Vector (IV) is used in the first step of 

encryption. The encryption process in CBC mode is 

shown in Figure 6 and the decryption process in Figure 7. 
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Figure 6: CBC mode Encryption of PACMATS 

 

 

 

 

 

 

 

 
 

 
 

 
Figure 7. CBC mode Decryption of PACMATS 

 

 The decryption is just the reverse of the 
encryption, except that the feedback of the previous level 
is readily available for decryption, whereas in encryption it 
is not. The speedup results of CBC mode implementation 
of PACMATS in MPI, OpenMP and Java Threads are 
given in Table 2 

TABLE II. CBC MODE IMPLEMENTATION OF PACMATS 

SUB-
BLOCK 

SIZE 

SPEEDUP IN CBC MODE OF PACMATS 

MPI OpenMP JAVA Threads 

ENC DEC ENC DEC ENC DEC 

8 bits 1.26 2.25 1.51 2.69 1.42 2.54 

16 bits 1.59 2.71 1.66 2.89 1.58 2.78 

32 bits 1.83 3.34 1.96 3.44 1.91 3.4 

64 bits 2.03 3.51 2.08 3.58 2.05 3.54 

128 bits 2.1 3.56 2.18 3.69 2.15 3.62 

256 bits 2.19 3.68 2.26 3.81 2.22 3.73 

CBC Mode: Cyber Block Chaining Mode 

ENC : Encryption   DEC : Decryption 

 

 The performance of CBC mode encryption of 

PACMATS is reduced considerably because of the 

dependencies caused by feedback of the ciphertext to the 

next level. The decryption is not affected as the feedback 

to the next level is readily available. The performance 

graphs of encryption and decryption of PACMATS in 

CBC mode is given in Figure 8 and Figure 9. 
 

 

 
 

 

 

 

 

 

 

 

 

 
 

 
Figure 8. Performance of CBC mode Encryption of PACMATS 
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Figure 9. Performance of CBC mode Decryption of PACMATS 

 

V.  INTERLEAVED  CBC IMPLEMENTATION 

OF PACMATS 

 The encryption in CBC mode depends on the 

encryption of the previous sub-blocks. This makes it 

difficult to parallelize encryption. The only solution to 

this problem is to interleave multiple encryption blocks. 

Interleaving can be done in n-ways, wherein the 2-way 

and 4-way interleaving are adopted in this work. 
 

A. Two-Way Interleaved CBC mode of PACMATS 

 Two-Way interleaving is the next immediate 

improvement to the CBC implementation. In two-way 

interleaving the output of the first encryption sub-block is 

feedback to the third and that of second to fourth and so 

on. In this case two Initialization Vectors are required to 

start the encryption and the decryption processes. The 

structure of two-way interleaving for encryption is shown 

in Figure 10 and that of decryption in Figure 11. 

 

 

 

 

 

 
 
 

 

 
Figure 10. Two-Way Interleaved CBC mode Encryption of PACMATS 
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Figure 11. Two-Way Interleaved CBC mode Decryption of PACMATS 
  

The decryption process in two-way interleaved CBC 

mode of PACMATS is just the reverse of the encryption 

process. The ciphertext feedback of the previous level is 

also readily available in each block of decryption, 

whereas in encryption it is not so. The speedup results of 

two-way interleaved CBC mode implementation of 

PACMATS in MPI, Open MP and Java Threads are given 

in Table 3. 
 

TABLE III. 2-WAY ICBC MODE IMPLEMENTATION OF 
PACMATS 

SUB-
BLOCK 

SIZE 

SPEEDUP IN 2-WAY ICBC MODE OF PACMATS 

MPI OpenMP JAVA Threads 

ENC DEC ENC DEC ENC DEC 

8 bits 1.51 2.29 1.82 2.73 1.7 2.6 

16 bits 1.86 2.76 1.96 2.94 1.88 2.83 

32 bits 2.21 3.36 2.33 3.48 2.28 3.43 

64 bits 2.39 3.55 2.47 3.67 2.41 3.58 

128 bits 2.46 3.62 2.55 3.76 2.5 3.67 

256 bits 2.55 3.73 2.63 3.87 2.58 3.78 

ICBC Mode: Interleaved Cyber Block Chaining Mode 
ENC : Encryption   DEC : Decryption 

 

 
 

 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 12. Performance of 2-Way ICBC mode Encryption of 

PACMATS 
 

 

 

 

 

 

 
 

 

 

 

 
 

 
 

Figure 13. Performance of 2-Way ICBC mode Decryption of 

PACMATS 
 

 The performance of two-way interleaved CBC 

implementation is found to be better than the CBC 

implementation and it is illustrated in Figure 12 and 

Figure 13. The additional processes or threads that handle 

the two-ways of encryption and decryption separately are 

responsible for this enhancement. 

 

B. Four-Way Interleaved CBC mode of PACMATS 

 In four-way interleaving the output of the first 

encryption sub-block is feedback to the fifth and that of 

second to sixth, third to seventh, fourth to eighth and so 

on. In four-way interleaving, four Initialization Vectors 

are required to start the encryption and the decryption 

processes. In order to enhance the efficiency of execution 

of 4-way ICBC mode implementation of PACMATS in 

parallel computing environments, the number of 

processes or threads used for implementing the encryption 

or the decryption algorithms is increased by four times. 

The complexity of implementing 4-way interleaved CBC 

technique is considerably increased because of the 

additional operations that has to be performed for every 

level of interleaving. The structure of four-way 

interleaving of PACMATS for encryption is shown in 

Figure 14 and that of decryption in Figure 15. 
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Figure 14: Four-Way Interleaved CBC mode Encryption of PACMATS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 15: Four-Way Interleaved CBC mode Decryption of PACMATS 

 
 

TABLE IV. 4-WAY ICBC MODE IMPLEMENTATION OF 
PACMATS 

SUB-
BLOCK 

SIZE 

SPEEDUP IN 4-WAY ICBC MODE OF PACMATS 

MPI OpenMP JAVA Threads 

ENC DEC ENC DEC ENC DEC 

8 bits 1.77 2.33 2.13 2.78 1.99 2.65 

16 bits 2.18 2.81 2.3 2.99 2.22 2.87 

32 bits 2.59 3.42 2.73 3.56 2.67 3.48 

64 bits 2.81 3.63 2.89 3.74 2.83 3.64 

128 bits 2.88 3.68 2.99 3.81 2.94 3.73 

256 bits 2.99 3.79 3.09 3.92 3.03 3.83 

ICBC Mode: Interleaved Cyber Block Chaining Mode 

ENC : Encryption   DEC : Decryption 

 

 A considerable improvement is seen in the 

performance of four-way interleaved CBC mode 

implementation of PACMATS when compared with the 

simple CBC and two-way Interleaved CBC modes. This 

is shown in Table 4. The 4-Way ICBC mode encryption 

performance of PACMATS is shown in Figure 16 and 

that of decryption is shown in Figure 17. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 16. Performance of 4-Way ICBC mode Encryption of 

PACMATS 
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Figure 17. Performance of 4-Way ICBC mode Decryption of 

PACMATS 
 

Increasing the level of the interleaving in CBC 

mode of PACMATS enhances the parallel performance, 

but it also increases the number of Initialization Vectors 

required and the complexity of implementations. Even 

though the encryptions are made to perform better, it 

cannot be enhanced like ECB mode implementations due 

to the dependency issues involved with the feedback of 

the ciphertext from the previous stage. The decryption 

processes does not suffer such drawbacks and they 

perform well in parallel executions, as the ciphertext of 

the previous stage is available well in advance before the 

beginning of the processes in the current level. 
 

VI. FUTURE SCOPE 

 

In this work, PACMATS is implemented in multi-core 

machines. Its behavior in other computing environments 

can be tested and suitable improvements can be 

incorporated. The issue of interoperability with different 

architectures can be studied and suitable modifications 

can be made to the basic design and structure of the 

algorithm. Further, the possibility of a developing a 

unique algorithm with single adaptive key for all parallel 

computing environments can be researched. 
 

VII. CONCLUSION 
VIII.  

PACMATS is an adaptive cryptographic algorithm that 

provides better security strength and performance in 

parallel computing environments. It requires 5.7 X 10
288 

years to break this cipher with brute force attack. 

PACMATS is a dynamic algorithm as its granularity and 

execution stages are decided during runtime using the bit 

patterns in the key. As the general reversible techniques 

are used, this algorithm is scalable. The algorithm is 

exclusively designed for software implementations and to 

avoid dependency problems in the parallel processing 

environments. PACMATS is both computation and 

communication intensive block cipher with Inter-block 

operations incurring more communication cost than Intra-

block operations. 

 

When executed in parallel computing environments the 

performance of PACMATS in ECB mode is found to be 

better. But it always produces the same ciphertext for a 

particular plaintext when the same key is used. Although 

CBC mode is employed to alleviate this problem, its 

decryptions support parallelization, whereas its 

encryptions do not. The issue faced in parallelization of 

CBC mode encryptions is solved to some extent with two-

way and four-way Interleaved CBC implementations. 
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