
 International Journal of advanced studies in Computer Science and Engineering
IJASCSE, Volume 3, Issue 5, 2014

www.ijascse.org Page 22

May 31

Implementation of PACMATS Cryptographic

Algorithm in CBC and ICBC Modes

J. John Raybin Jose
Department of Information Technology,

Bishop Heber College (Autonomous),

Tiruchirappalli-620 017, India

E. George Dharma Prakash Raj
School of Computer Science, Engineering & Applications,

Bharathidasan University,

Tiruchirappalli-620 023, India

Abstract — Parallelized Adaptive Cipher with Modular

Arithmetic Transposition and Substitution (PACMATS) is a

Symmetric Cryptographic Algorithm designed with

conventional techniques to efficiently utilize parallel

computing capabilities available today. It is designed to

overcome the performance inconsistencies prevalent in

conventional cryptographic algorithms when they are

implemented in different computing systems with different

processing capabilities. The size of the key and the plain text

blocks are each 1024-bits. This algorithm derives the

adaptive nature from its flexible design in fixing the size of

the key and plain text sub-blocks and the number of rounds.

Flow of the algorithm is made dynamic by determining the

execution steps through each key value at runtime. In spite

of these advantages PACMATS always produces the same

cipher text block for a particular plain text block when the

same key is used. CBC mode along with 2-way and 4-way

Interleaved CBC modes are employed to overcome this

problem. The performance of the PACMATS in ECB, CBC

and ICBC modes are analyzed with implementations in

shared memory parallel computing environment using

OpenMP, Java Threads and MPI.

Keywords : Symmetric Block Cipher, Parallel Adaptive

Cryptography, Cryptograhic Modes, Modular Arithmetic,

Transposition, Substitution.

I. INTRODUCTION
Conventional cryptographic algorithms focus

only on the complexity of the algorithm and the strength

and the secrecy of the key [1]. Wide varieties of

challenges are faced today in efficiently implementing

these crypto systems as new trends and technologies have

crept into modern communication and computing

systems. Conventional symmetric cryptographic

algorithms such as DES, IDEA, RC6, Blowfish and AES

are developed before the year 2000 when computers were

built around single 32, 16 or even 8 bits processors. But

now, Cryptographic algorithms can be executed much

faster on modern computers. The present day computing

systems and that of future are not that of single core 32-

bits desktops, but of multi-cored chips and multiprocessor

machines whose processing capacities are 64 or 128 or

more bits. Parallelizing the cryptographic algorithms is

the only means to utilize these systems productively [2].

Nowadays there is a sharp increase in the rate of

encryptions and decryptions carried out per unit time as

the amount of information exchanged between networks

have increased exponentially. This imposes overhead in

the information exchange and causes congestion. A way

out of this trouble is to develop a new class of parallel

algorithms that reduce the time required for encryption

and decryption without diminishing the security strength.

 Cryptographic algorithms are classified as

Symmetric and Asymmetric Key Algorithms. Symmetric

key algorithms use only one key and they rely on the

secure distribution and management of the session key.

Symmetric key algorithms are divided into stream ciphers

and block ciphers. Stream ciphers encrypt the bytes of the

message one at a time but block ciphers take a number of

bytes and encrypt them as a single unit. In Asymmetric

Key Algorithms a public key and a private key are used.

The public key is used to encrypt the information at the

sending end; whereas the private key is known only to the

receiver and it is used to decrypt the information [3].

Symmetric Block Ciphers are involved in this work.

 Substitution, transposition and modular

arithmetic techniques are employed in PACMATS.

Substitution replaces a character by another. Transposition

permutes the characters in a block of data. Substitution

causes confusion in a cipher and adds more complexity to

the algorithm in finding a relationship between the key and

the cipher text from one side and the key and the plaintext

in another side. Transposition causes diffusion and makes

sure that there is no local relationship between the

statistics of characters in plaintext and ciphertext [4].

 Modular Arithmetic involves the remainder of

division operation. Addition and multiplication modulo

operations are reversible and they are involved in

cryptography. The binary coded value of the plain text is

added or multiplied with the key, which is a member of the

set of residues ‘Zm’ to yield a sum or product value. When

the value obtained is divided with ‘m’ yields a remainder,

which is the resultant cipher text. Similarly the plain text

can be retrieved by performing the same operation with the

cipher text and the additive or multiplicative inverse value

of the key used [5].

 Adaptive Cryptography is a trend, which focuses

on attaining flexibility in the cryptographic

implementations by dynamically varying the algorithmic

flow and the choice of the key and the plain-text sub-

blocks. Adaptive Cryptographic techniques can be

classified as (i) Inter-Algorithmic Adaptive Techniques

and (ii) Intra-Algorithmic Adaptive Techniques. Inter-

Algorithmic Adaptation is achieved by employing

 International Journal of advanced studies in Computer Science and Engineering
IJASCSE, Volume 3, Issue 5, 2014

www.ijascse.org Page 23

May 31

different algorithms [6], whereas Intra-Algorithmic

Adaptation instills dynamism within the same algorithm.

Intra-Algorithmic Adaptation is employed in this work.

 Parallel Cryptography is a recent development,

which deals with implementation of cryptographic

algorithms in modern parallel computing environments.

Implicit parallelism uses the inherent resources and

techniques whereas, explicit parallelism is extracted by

the external arrangements and codes. Techniques used for

explicit parallelism can be categorized as (i) Per-

Connection Parallelism (ii) Per-Packet Parallelism and

(iii) Intra-Packet Parallelism. Per-connection parallelism

is a method in which each connection is given its own

thread or process that runs exclusively on one processor.

The per-connection parallelization method makes no

attempt to fully utilize modern architectures. In Per-

packet parallelism connections disperse their packet

processing load over multiple processors, wherein each

packet is treated individually. Many current algorithms

lend themselves well to this kind of parallelization, but,

no cryptographic software implementing this per-packet

parallelism is available. Intra-packet parallelism is the

most difficult type of parallelism, as it depends on

algorithm design. It also requires changes in the

implementation of the cryptographic algorithm,

depending no longer on the flexibility of the hardware or

operating system upon which it is run [2], [7]. Intra-

packet parallelism is employed in PACMATS.

 This paper is planned as follows. Section 2 gives

the related works, Section 3 depicts the ECB

implementation of PACMATS, Section 4 gives the CBC

implementation of PACMATS, Section 5 deals with its

Interleaved CBC implementations, Section 6 gives the

Future Scope and Section 7 concludes the paper.

II. RELATED WORKS

 Efforts to parallelize existing cryptographic

algorithms have been pursued by many researchers from

year 2000 onward. The prominent of these efforts can be

classified broadly as Hardware or Software Parallel

Cryptographic Implementations involving several

technical approaches under them as shown in Figure 1.

Figure 1. Parallel Implementation of Existing Block Ciphers

Parallelization with RISC Processors by HoWon Kim et

al., introduced a special-purpose microprocessor known

as crypto processor. It had a 32-bit RISC processor block

and a coprocessor block dedicated to SEED and TDES

[8]. Pionteck et al., presented a hardware design of AES

with reconfigurable encryption/ decryption engines which

supports all key lengths [9].

An Application-Specific Integrated Circuit

(ASIC) is an Integrated Circuit customized for a particular

use. ASICs provide robust operation and much of the

overhead involved is reduced. The works carried out on

ASIC implementation of DES, 3DES, IDEA and AES by

S. Mukherjee et al., T. Ichikawa et al., and B. Weeks et

al., are prominent in this category [10]-[12].

Field Programmable Gate Array (FPGA) logic

cells are reconfigurable platforms that provide low cost,

high performance implementations of Block Ciphers.

Several standard algorithms such as DES, TDES, and

AES are parallelized using FPGAs by Swankoski et al.,

Kotturi, et al., and Chi-Wu, et al. [13]-[15].

Multi-core Processors and Graphical Processing

Units (GPUs) are used to parallelize the existing

Cryptographic algorithms to enhance the performance.

CUDA programming is used to parallelize algorithms in

GPU and OpenMP is used to extract parallelism from

Multi-core Processors [16]-[19]. Praveen Dongara et al.,

implemented several symmetric cryptographic algorithms

in ECB, CBC and interleaved CBC modes [20]. Similar

works with CBC and Interleaved CBC modes were also

carried out on AES by Zadia Codabux-Rossan et al. [21]

and Ashokkumar et al. [22]

 The most time-consuming elements of source

code of cryptographic algorithms without including the

I/O functions are loops, they are parallelized for all the

popular cryptographic algorithms such as DES, Triple

DES, IDEA, AES, RC5, Blowfish, GOST and LOK191

by Burak et al. in standard modes of operations such as

ECB, CBC, CFB, OFB and CTR modes [23] [24].

 Even though all the efforts to parallelize the

existing conventional cryptographic algorithms with

hardware and software techniques had given better

results, they cannot be fully parallelized or implemented

efficiently in present day computing systems. The

dependency problems and the inability to efficiently

modularize the sections of the algorithms hover around

and haunt the parallelization. Thus a path for the new

class of cryptographic algorithms that is devoid of these

problems is set in.

III. ECB IMPLEMENTATION OF PACMATS

 In our previous work we have developed the

Parallel Adaptive Cipher with Modular Arithmetic,

Transposition and Substitution Techniques (PACMATS)

and implemented it in ECB mode [25]. It is a symmetric

Parallel Cryptographic Implementations

Hardware Parallelization Software Parallelization

Paralleli-

zation with

RISC

Processors

Paralleli-

zation

with

FPGA

Parallelization with

ASIC

Parallel

Codes

for GPU /

Multicore

Processors

Paralleli

-zation

of Loops

 International Journal of advanced studies in Computer Science and Engineering
IJASCSE, Volume 3, Issue 5, 2014

www.ijascse.org Page 24

May 31

block cipher with block length and key size each of 1024

bits. The sub-block size of key and the plain text is varied

based on the computing environment used. The flow of the

algorithm is decided dynamically by the control

information in the key. The granularity of the algorithm is

decided by forming sub-blocks of various sizes in the

range 2
n
 where n=3 to 8. The processing resources

available and the security strength required are used to

decide the number of rounds and size of the sub-blocks.

This is depicted in Figure 2.

Figure 2. General Block Diagram of PACMATS

Each round has eight stages and the 1024 bits key
is transformed for use in each stage as depicted in
Figure 3. In the first stage Addition Modulo 2

8
 operation is

performed with the key sub-blocks and the plain text sub-
blocks in a pattern decided by the initial and the final bits
of the key sub-blocks. If both these bits are of same value
then the operation is performed directly, otherwise the
plain text bits are reversed before the operation. The key
bits are rotated right or left by the position decided by the
value got from the initial ‘l’ bits of each sub-block. Here
‘l’ takes the value 3 to 8 based on the sub-block size 2

l
.

Figure 3. Stages in each round of PACMATS

 In the second stage Inter Sub-block transposition

is done by swapping the odd and even numbered sub-

blocks or by swapping them in the reverse order.

Following this, exchange manipulation is carried out

between the key sub-blocks. This is achieved by swapping

the odd numbered sub-blocks with the next higher order

even numbered sub-blocks or by swapping them in the

reverse order. In the third stage, addition modulo

2
16

operation is performed with key and plain text sub-

blocks after dividing the sub-blocks into chunks of 16 bits.

The Intra sub-block rotation is carried for each key sub-

block based on the key value as it is done before the

second stage. In the fourth stage intra sub-block

substitution is carried out with plaintexts and key based on

the key sub-block values. An inter sub-block rotation is

performed for the key before the fifth stage and

multiplication modulo 2
8
+1 operation is performed in the

fifth stage with plain text sub-blocks further divided into

chunks of 8-bits based on control information derived

from the key. Then key manipulation is performed with

the key sub-blocks as it is done before for the second and

the fourth stages. In the sixth stage Intra Sub-block

transposition operation is carried out on the plain text sub-

blocks. The key undergoes exchange sub-block key

manipulation once again, as it is done just before the third

stage. In the seventh stage multiplication modulo 2
16

+1

operation is carried with key and plain text sub-blocks by

dividing the plaintext sub-blocks into chunks of 16 bits.

The key bits are then involved in the Intra sub-block

rotation before they are utilized in the eighth stage. Intra

sub-block rotation based on the initial few bits of each key

sub-block is done in the eighth and the final stage. Brief

algorithmic depiction of PACMATS with single round is

given below.

Input: 1024 bit plain text block, 1024 bit key block

Output: ‘n’ blocks of ‘b’ bits

Sub-Block Generation:

1. Run environment identification routine to identify the

number of processors/cores ‘p’ data handling

capacity ‘d’ and clock speed ‘s’ in order to divide the

key and plaintext into ‘n’ sub-blocks of ‘b’ bits.

2. if (p=1&&d<16 bits&&s<=100 MHz) then b=8 bits.

3. else if(p==1 && d> =16 bits && d<32 bits &&

s>100 MHz && s<=1000 MHz) then b=16 bits.

4. else if(p==1 && d>=32 bits && d<64 bits &&

s>1000 MHz) then b=32 bits.

5. else if(p>1 && p<=4 && d>=64 bits && d< 128

bits && s>2000 MHz) then b=64 bits.

6. else if(p>4 && p<= 12 && d>=128 bits && s>3000

MHz) then b=128 bits.

7. else if(p>12 && d>=128 bits && s>3000 MHz) then

b=256 bits.

8. else display “resources unsuitable to implement

PACMATS”.

Steps in Single Round execution of PACMATS:

1. Addition modulo 2
8
 operation.

2. Intra sub-block key rotation.

3. Inter sub-block transposition.

4. Exchange sub-block key manipulation.

 International Journal of advanced studies in Computer Science and Engineering
IJASCSE, Volume 3, Issue 5, 2014

www.ijascse.org Page 25

May 31

5. Addition modulo 2
16

 operation.

6. Intra sub-block key rotation.

7. Intra sub-block substitution.

8. Inter sub-block key rotation.

9. Multiplication modulo 2
8
+1 operation.

10. Intra sub-block key rotation.

11. Intra sub-block Transposition.

12. Exchange sub-block key operation.

13. Multiplication modulo 2
16

+1 operation.

14. Intra sub-block key rotation.

15. Intra sub-block rotation.

 For all normal ECB mode implementation of
PACMATS in Personal Computers, single round
execution is sufficient as it provides the required security
strength. Utilization of inter sub-block and intra sub-block
transpositions, substitutions and modular arithmetic
operations makes PACMATS both communication and
computation intensive for execution in parallel computing
environments. PACMATS is implemented in shared
memory architecture using MPI, OpenMP and Java
Threads programming with different sub-block sizes and
compared with sequential results. The speedup of various
combinations of executions are analyzed and compared
and the results are shown in Table 1.

TABLE I. ECB MODE IMPLEMENTATION OF PACMATS

SUB-
BLOCK

SIZE

SPEEDUP IN ECB MODE OF PACMATS

MPI OpenMP JAVA Threads

ENC DEC ENC DEC ENC DEC

8 bits 2.32 2.36 2.79 2.82 2.63 2.68

16 bits 2.81 2.85 2.98 3.03 2.88 2.92

32 bits 3.43 3.47 3.56 3.6 3.49 3.53

64 bits 3.63 3.67 3.76 3.79 3.66 3.69

128 bits 3.7 3.73 3.82 3.86 3.75 3.78

256 bits 3.81 3.84 3.94 3.98 3.86 3.89

ECB Mode: Electronic Code Book Mode

ENC : Encryption DEC : Decryption

 Speedup, throughput, efficiency and cost are the
metrics popularly used to measure the performance of
parallel computing systems. This work focuses on single
encryptions and decryptions to determine the performance.
Hence, speedup alone is considered to determine the
performance of PACMATS algorithm. Speedup is the ratio
of the time taken by the serial implementation of the
algorithm to that of its parallel implementation. It is
denoted by Sp = Ts/Tp. Where, ‘Tp’ is the parallel
execution time and ‘Ts’ is the sequential execution time.

 All the parallel implementations provided similar
variations in their output. When the sub-block size is kept
small the speedup is low, but it gradually increased
linearly when the sub-block size is increased. The
decryption process provided better speedup than the
encryption process because most of the values and the
decisions computed for the encryption stages are made

available to the decryption stages. A comparative
representation on the performance of encryption using
MPI, OpenMP and Java threads are shown in
Figure. 4 and the decryption is shown in Figure 5.

Figure 4. Performance of ECB mode Encryption of PACMATS

Figure 5: Performance of ECB mode Decryption of PACMATS

IV. CBC IMPLEMENTATION OF PACMATS

 In ECB mode of PACMATS, a plain text block

always produces the same cipher text block, when the

same key is used. Cipher Block Chaining (CBC) mode is

used to overcome this problem. CBC mode ensures that

even if the same plain text block is repeated again and

again it yield totally different cipher text blocks in the

output. In CBC mode result of the encryption of the

previous block are fed back into the encryption of the

current block. As there is no feedback available for the

first block of the plaintext a random block of text known

as Initialization Vector (IV) is used in the first step of

encryption. The encryption process in CBC mode is

shown in Figure 6 and the decryption process in Figure 7.

 International Journal of advanced studies in Computer Science and Engineering
IJASCSE, Volume 3, Issue 5, 2014

www.ijascse.org Page 26

May 31

Figure 6: CBC mode Encryption of PACMATS

Figure 7. CBC mode Decryption of PACMATS

 The decryption is just the reverse of the
encryption, except that the feedback of the previous level
is readily available for decryption, whereas in encryption it
is not. The speedup results of CBC mode implementation
of PACMATS in MPI, OpenMP and Java Threads are
given in Table 2

TABLE II. CBC MODE IMPLEMENTATION OF PACMATS

SUB-
BLOCK

SIZE

SPEEDUP IN CBC MODE OF PACMATS

MPI OpenMP JAVA Threads

ENC DEC ENC DEC ENC DEC

8 bits 1.26 2.25 1.51 2.69 1.42 2.54

16 bits 1.59 2.71 1.66 2.89 1.58 2.78

32 bits 1.83 3.34 1.96 3.44 1.91 3.4

64 bits 2.03 3.51 2.08 3.58 2.05 3.54

128 bits 2.1 3.56 2.18 3.69 2.15 3.62

256 bits 2.19 3.68 2.26 3.81 2.22 3.73

CBC Mode: Cyber Block Chaining Mode

ENC : Encryption DEC : Decryption

 The performance of CBC mode encryption of

PACMATS is reduced considerably because of the

dependencies caused by feedback of the ciphertext to the

next level. The decryption is not affected as the feedback

to the next level is readily available. The performance

graphs of encryption and decryption of PACMATS in

CBC mode is given in Figure 8 and Figure 9.

Figure 8. Performance of CBC mode Encryption of PACMATS

\

Figure 9. Performance of CBC mode Decryption of PACMATS

V. INTERLEAVED CBC IMPLEMENTATION

OF PACMATS

 The encryption in CBC mode depends on the

encryption of the previous sub-blocks. This makes it

difficult to parallelize encryption. The only solution to

this problem is to interleave multiple encryption blocks.

Interleaving can be done in n-ways, wherein the 2-way

and 4-way interleaving are adopted in this work.

A. Two-Way Interleaved CBC mode of PACMATS

 Two-Way interleaving is the next immediate

improvement to the CBC implementation. In two-way

interleaving the output of the first encryption sub-block is

feedback to the third and that of second to fourth and so

on. In this case two Initialization Vectors are required to

start the encryption and the decryption processes. The

structure of two-way interleaving for encryption is shown

in Figure 10 and that of decryption in Figure 11.

Figure 10. Two-Way Interleaved CBC mode Encryption of PACMATS

PACMATS
ENCRYPTION

1024–bits

Plain Text

IV

PACMATS
ENCRYPTION

1024–bits

Plain Text

1024 – bits

Cipher Text

1024–bits

Plain Text

PACMATS
ENCRYPTION

1024 – bits

Cipher Text

1024 – bits

Cipher Text

K K K

PACMATS
DECRYPTION

IV

PACMATS
DECRYPTION

1024 – bits

Cipher Text

PACMATS
DECRYPTION

1024 – bits

Cipher Text

1024 – bits

Cipher Text

1024–bits

Plain Text

1024–bits

Plain Text

1024–bits

Plain Text

K K K

ENC

PT3

CT3

K

ENC

PT4

CT4

K

ENC

PT1

IV1

CT1

K ENC

PT2

IV2

CT2

K

 International Journal of advanced studies in Computer Science and Engineering
IJASCSE, Volume 3, Issue 5, 2014

www.ijascse.org Page 27

May 31

Figure 11. Two-Way Interleaved CBC mode Decryption of PACMATS

The decryption process in two-way interleaved CBC

mode of PACMATS is just the reverse of the encryption

process. The ciphertext feedback of the previous level is

also readily available in each block of decryption,

whereas in encryption it is not so. The speedup results of

two-way interleaved CBC mode implementation of

PACMATS in MPI, Open MP and Java Threads are given

in Table 3.

TABLE III. 2-WAY ICBC MODE IMPLEMENTATION OF
PACMATS

SUB-
BLOCK

SIZE

SPEEDUP IN 2-WAY ICBC MODE OF PACMATS

MPI OpenMP JAVA Threads

ENC DEC ENC DEC ENC DEC

8 bits 1.51 2.29 1.82 2.73 1.7 2.6

16 bits 1.86 2.76 1.96 2.94 1.88 2.83

32 bits 2.21 3.36 2.33 3.48 2.28 3.43

64 bits 2.39 3.55 2.47 3.67 2.41 3.58

128 bits 2.46 3.62 2.55 3.76 2.5 3.67

256 bits 2.55 3.73 2.63 3.87 2.58 3.78

ICBC Mode: Interleaved Cyber Block Chaining Mode
ENC : Encryption DEC : Decryption

Figure 12. Performance of 2-Way ICBC mode Encryption of

PACMATS

Figure 13. Performance of 2-Way ICBC mode Decryption of

PACMATS

 The performance of two-way interleaved CBC

implementation is found to be better than the CBC

implementation and it is illustrated in Figure 12 and

Figure 13. The additional processes or threads that handle

the two-ways of encryption and decryption separately are

responsible for this enhancement.

B. Four-Way Interleaved CBC mode of PACMATS

 In four-way interleaving the output of the first

encryption sub-block is feedback to the fifth and that of

second to sixth, third to seventh, fourth to eighth and so

on. In four-way interleaving, four Initialization Vectors

are required to start the encryption and the decryption

processes. In order to enhance the efficiency of execution

of 4-way ICBC mode implementation of PACMATS in

parallel computing environments, the number of

processes or threads used for implementing the encryption

or the decryption algorithms is increased by four times.

The complexity of implementing 4-way interleaved CBC

technique is considerably increased because of the

additional operations that has to be performed for every

level of interleaving. The structure of four-way

interleaving of PACMATS for encryption is shown in

Figure 14 and that of decryption in Figure 15.

DEC

PT

1

IV1

CT

1

K DEC

PT

2

IV2

CT

2

K DEC

PT

3

CT

3

K

DEC

PT

4

CT

4

K

 International Journal of advanced studies in Computer Science and Engineering
IJASCSE, Volume 3, Issue 5, 2014

www.ijascse.org Page 28

May 31

Figure 14: Four-Way Interleaved CBC mode Encryption of PACMATS

Figure 15: Four-Way Interleaved CBC mode Decryption of PACMATS

TABLE IV. 4-WAY ICBC MODE IMPLEMENTATION OF
PACMATS

SUB-
BLOCK

SIZE

SPEEDUP IN 4-WAY ICBC MODE OF PACMATS

MPI OpenMP JAVA Threads

ENC DEC ENC DEC ENC DEC

8 bits 1.77 2.33 2.13 2.78 1.99 2.65

16 bits 2.18 2.81 2.3 2.99 2.22 2.87

32 bits 2.59 3.42 2.73 3.56 2.67 3.48

64 bits 2.81 3.63 2.89 3.74 2.83 3.64

128 bits 2.88 3.68 2.99 3.81 2.94 3.73

256 bits 2.99 3.79 3.09 3.92 3.03 3.83

ICBC Mode: Interleaved Cyber Block Chaining Mode

ENC : Encryption DEC : Decryption

 A considerable improvement is seen in the

performance of four-way interleaved CBC mode

implementation of PACMATS when compared with the

simple CBC and two-way Interleaved CBC modes. This

is shown in Table 4. The 4-Way ICBC mode encryption

performance of PACMATS is shown in Figure 16 and

that of decryption is shown in Figure 17.

Figure 16. Performance of 4-Way ICBC mode Encryption of

PACMATS

ENC

PT1

IV1

CT1

K

ENC

PT2

IV2

CT2

K

ENC

PT3

IV3

CT3

K

ENC

PT4

IV4

CT4

K

ENC

PT5

CT5

K

ENC

PT6

CT6

K

ENC

PT7

CT7

K

ENC

PT8

CT8

K

DEC

PT8

CT8

K

DEC

PT1

IV1

CT1

K DEC

PT4

IV4

CT4

K DEC

PT3

IV3

CT3

K DEC

PT2

IV2

CT2

K DEC

PT5

CT5

K

DEC

PT6

CT6

K

DEC

PT7

CT7

K

 International Journal of advanced studies in Computer Science and Engineering
IJASCSE, Volume 3, Issue 5, 2014

www.ijascse.org Page 29

May 31

Figure 17. Performance of 4-Way ICBC mode Decryption of

PACMATS

Increasing the level of the interleaving in CBC

mode of PACMATS enhances the parallel performance,

but it also increases the number of Initialization Vectors

required and the complexity of implementations. Even

though the encryptions are made to perform better, it

cannot be enhanced like ECB mode implementations due

to the dependency issues involved with the feedback of

the ciphertext from the previous stage. The decryption

processes does not suffer such drawbacks and they

perform well in parallel executions, as the ciphertext of

the previous stage is available well in advance before the

beginning of the processes in the current level.

VI. FUTURE SCOPE

In this work, PACMATS is implemented in multi-core

machines. Its behavior in other computing environments

can be tested and suitable improvements can be

incorporated. The issue of interoperability with different

architectures can be studied and suitable modifications

can be made to the basic design and structure of the

algorithm. Further, the possibility of a developing a

unique algorithm with single adaptive key for all parallel

computing environments can be researched.

VII. CONCLUSION
VIII.

PACMATS is an adaptive cryptographic algorithm that

provides better security strength and performance in

parallel computing environments. It requires 5.7 X 10
288

years to break this cipher with brute force attack.

PACMATS is a dynamic algorithm as its granularity and

execution stages are decided during runtime using the bit

patterns in the key. As the general reversible techniques

are used, this algorithm is scalable. The algorithm is

exclusively designed for software implementations and to

avoid dependency problems in the parallel processing

environments. PACMATS is both computation and

communication intensive block cipher with Inter-block

operations incurring more communication cost than Intra-

block operations.

When executed in parallel computing environments the

performance of PACMATS in ECB mode is found to be

better. But it always produces the same ciphertext for a

particular plaintext when the same key is used. Although

CBC mode is employed to alleviate this problem, its

decryptions support parallelization, whereas its

encryptions do not. The issue faced in parallelization of

CBC mode encryptions is solved to some extent with two-

way and four-way Interleaved CBC implementations.

REFERENCES

[1] Jeffrey Hoffstein, Jill Pipher, Joseph H. Silverman, “An

Introduction to Mathematical Cryptography”, Springer

International Edition, Springer (India) Pvt. Ltd., New

Delhi, 2008.

[2] Eric C. Seidel, Joseph N. Gregg, “Preparing Tomorrow’s

Cryptography: Parallel Computation via Multiple

Processors, Vector Processing, and Multi-Cored Chips”,

Research Paper, May 2003.

[3] William Stallings, “Cryptography and Network Security-

Principles and Practice”, 5th Edition, Dorling Kindersley

(India) Pvt. Ltd., licensees of Pearson Education, 2011.

[4] Menezes A.J., Van Oorschot P.C., Vastone S.A.,

“Handbook of Applied Cryptography”, CRC Press, 1996.

[5] Schneier B., “Applied Cryptography : Protocols,

Algorithms, and Source Code in C”, Second Edition, Wiley

& Sons, 1995.

[6] Suman Khakurel, Prabhat Kumar Tiwary, Niwas Maskey,

Gitanjali Sachdeva, “Security Vulnerabilities in IEEE

802.11 and Adaptive Encryption Technique for Better

Performance”, IEEE Symposium on Industrial Electronics

and Applications, Penang, Malaysia, 2010.

[7] Thomas Rauber, Gudula Runger, “Parallel Programming –

for Multicore and Cluster Systems”, International Edition,

Springer (India) Pvt. Ltd. New Delhi, 2010.

[8] HoWon Kim, YongJe Choi, Kyoil Chung, and HeuiSu Ryu,

"Design and Implementation of a Private and Public Key

Crypto Processor and Its Application to Security System,"

proceedings of the 3rd International Workshop on

Information Security Applications, pp. 515 – 531, Jeju,

Korea, 2002,

[9] Pionteck, T., Staake T., Stiefmeier T., Kabulepa L. D.,

Glesner M., “Design of reconfigurable AES

encryption/decryption engine for mobile terminals”, in the

proceedings of the International Symposium on Circuits

and Systems, 2004.

[10] Sourav Mukherjee, Bidhudatta Sahoo, “A survey on

hardware implementation of IDEA Cryptosystems”

Information Security Journal : A Global Perspective, Vol.

20, Nr. 4-5, pp 210-218, 2011.

[11] Tetsuya Ichikawa, Tomomi Kasuya, and Mitsuru. Matsui.

“Hardware evaluation of the AES finalists.” In Proc. Third

Advanced Encryption Standard Candidate Conference,

pages 279–285, USA, 2000.

[12] Bryan Weeks, Mark Bean, Tom Rozylowicz, and Chris

Ficke. “Hardware performance simulations of Round 2

Advanced Encryption Standard algorithms”. In Proc. Third

Advanced Encryption Standard Candidate Conference,

USA, 2000.

[13] Swankoski E. J., Brooks R. R., Narayanan V., Kandemir

M., and Irwin M. J., “A Parallel Architecture for Secure

FPGA Symmetric Encryption”, proceedings of the 18th

International Parallel and Distributed Processing

Symposium, Santa Fe, New Mexico, 2004.

[14] Kotturi D., Seong-Moo Y., Blizzard J., “AES crypto chip

utilizing high-speed parallel pipelined architecture”

proceedings of the IEEE International Symposium on

Circuits & Systems, 2005.

 International Journal of advanced studies in Computer Science and Engineering
IJASCSE, Volume 3, Issue 5, 2014

www.ijascse.org Page 30

May 31

[15] Chi-Wu H., Chi-Jeng C., Mao-Yuan L., Hung-Yun T.,

“The FPGA Implementation of 128-bits AES Algorithm

Based on Four 32-bits Parallel Operation”, First

International Symposium on Data, Privacy, and E-

Commerce, 2007.

[16] Chonglei, M., J. Hai and J. Jennes, “CUDA-based AES

Parallelization with fine-tuned GPU memory utilization”,

proceedings of the IEEE International Symposium on

Parallel and Distributed Processing, Workshops and Ph. D.

Forum, pp19-23, 2010.

[17] Julian Ortega, Helmuth Tefeffiz, Christian Treffiz,

“Parallelizing AES on Multicores and GPUs”, IEEE

International Conference on Electro/Information

Technology, Mankato, US, pp. 1-5, 2011.

[18] Li, H. and J. Z. Li, “A new compact dual-core architecture

for AES encryption and decryption”, Canadian Journal of

Electrical and Computer Engineering, pp 209-213, 2008.

[19] Hua Li., “A parallel S-box architecture for AES byte

substitution”, paper presented at IEEE sponsored

International Conference on Communication, Circuits and

Systems, Chengdu, China, 2004.

[20] Praveen Dongara, T. N. Vijaykumar, Accelerating Private-

key cryptography via Multithreading on Symmetric

Multiprocessors. In Conference Proceedings of the IEEE

International Symposium on Performance Analysis of

Systems and Software, pp 58-69, 2003.

[21] Zadia Codabux-Rossan, M. Razvi Doomum, “AES CCMP

Algorithm with N-Way Interleaved Cipher Block

Chaining”, University of Mauritius Research Journal,

Volume – 15, pp 527-544, 2009.

[22] S. Ashokkumar, K. Karuppasamy, Balaji Srinivasan,

V.Balasubramanian “Parallel Key Encryption for CBC and

Interleaved CBC” International Journal of Computer

Applications, Volume 2–No. 1, 2010.

[23] Bielecki W., Burak D., “Parallelization of Standard Modes

of Operation for Symmetric Key Block Ciphers”, Image

Analysis, Computer Graphics, Security Systems and

Artificial Intelligence Applications Vol 1, Bialystok 2005.

[24] Bielecki W., Burak D., “Parallelization of Symmetric

Block Ciphers”, Computing, Multimedia and Intelligent

Techniques special issue on Live Biometrics and Security,

Vol. 1, Czestochowa University of Technology, June 2005.
[25] J. John Raybin Jose, E. George Dharma Prakash Raj,

“PACMATS – An Adaptive Symmetric Block Cipher for

Parallel Computing Environments” in the proceedings of

the International Conference on Wireless Sensor Networks

& Information Security, SASTRA University, Thanjavur,

India, December 2013.

