
 International Journal of Advanced Studies in Computer Science & Engineering

IJASCSE Volume 3, Issue 3, 2014

www.ijascse.org Page 18

March 31

Evaluating the Relevance of Prevailing Software

Metrics to Address Issue of Security Implementation

in SDLC
C. Banerjee

Research Scholar,

Jagannath University, Jaipur, India

Arpita Banerjee
Assistant Professor,

St. Xavier’s College, Jaipur, India

P. D. Murarka
Professor,

Arya College of Engg. & Tech., Jaipur

Abstract— Security implementation in software during its

early stages of development ensures fault free software.

The security requirements are qualitative in nature

therefore they should be converted into quantitative

measure with the help of metrics. As per the statistics

available, the issues of security are not very well

addressed by already present traditional software

metrics. Security becoming a very important

requirement of most software systems, the existing

software metrics or some newly developed security

metrics have to be tailored considering the security

aspect during the software engineering process. This

research paper explores the role of existing software

security and evaluates the same from security

implementation point of view during software

development process. The paper further shows the

various finding and observation and recommends some

solutions for comprehensive development of software

security metrics.

Keywords-software metrics; security metrics; software security;

security in software; security implementation in SDLC

I. INTRODUCTION

Software, in this age of information, has an integral role

to play in the world’s economy and its success lies in its

secured use. Security of software is the primary and major

concern for industry, academic institution and research

community. Security implementation in software enforces

limits on the damages caused due to various attack triggered

fault and provides quick recovery mechanism for the

system. It ensures uninterrupted operation of the system

under most adverse condition [1, 2].

Researchers suggest that security of software should not

be considered as just another aspect of software quality.

They advocated that the security aspect should be dealt

separately and not merely as qualities feature due to the fact

that implementation of good security in software cannot be

considered as a byproduct of good quality [3]. In many

organizations, less importance is given to implementation of

security in software due to the pre assumption that it may

delay the project and adds to time and cost factor [1]. As

such, as an alternative, the organizations adopt the process

of penetration testing which works on the concept of build

then break. According to researchers, results have shown

that penetration testing can only act as a security aid and

does not reveal all security issues and problems in software

[3].

Security requirement of software are considered as a set

of nonfunctional attributes. These qualitative measure needs

to be converted to quantitative measures or metrics which

can then be used as indicators and estimators and helps the

security analyst in measurement of degree of security

implementation in software [4, 5]. From the beginning of

software development process, these metrics can be useful

in analysis of flaw in a software system suggesting its

prevention or timely detection and correction [6].

Software Metrics are used by software development team

to access project status, to gain insight into the efficiency of

software process, to track potential risk, early problem area

detection, adjust work flow or tasks, etc [7]. The security

implementation during software development process are

not properly addressed and since security is a very important

requirement of a software systems, hence, the existing

software metrics or some newly developed security metrics

have to be extended / developed for comprehensive

implementation of security during the software engineering

process [8, 9].

Although researchers have done remarkable work in the

field of software security metrics, still it lacks support and

validation from the software organization and a major

portion of work needs to be carried out for proper

implement of security during the early development stages

of software. In extension to the work carried out earlier, in

this paper we intend to evaluate the relevance of prevailing

metrics to address the issues of security implementation in

SDLC. Rest of the paper is organized as follows: in section

II we discuss about ‘Software Metrics and Security

Metrics’, and in section III, ‘Study of Existing Software

Metrics’ are given, section IV, throws light on ‘Evaluation

of Existing Metrics: Security Perspective’ and Section V

focuses on ‘Findings and Observations’ with ‘Conclusion

and Future Work’ given in section VI.

 International Journal of Advanced Studies in Computer Science & Engineering

IJASCSE Volume 3, Issue 3, 2014

www.ijascse.org Page 19

March 31

II. SOFWTARE METRICS AND SECURITY METRICS

Measure is a quantitative indicator of the size of some

process or process attribute. Measure of software

engineering process can be characterized into direct

measures and indirect measures. Direct measure includes

lines of codes (LOC), size of memory, defects for each

reporting time period, and execution speed. Indirect measure

includes quality attributes like functionality, complexity,

efficiency, reliability, maintainability, security, etc.

Measurement is the process to obtain a measure. Metrics

can be defined as a quantitative measure of the scale to

which a system, component or process holds a known

characteristic [7].

Software metrics can be defined as the

measurement of software product and the process through

which the software is developed. For modeling the software

development process the measurement related to software

process and products are developed by software

development team. These measurements in the form of

metrics are used by the software development team to

estimate and predict various tangible and intangible factors

like cost, schedule productivity, quality etc. The information

thus collected from these metrics is used by the software

development team to manage and control the development

process which in turn results in improved software products

[7, 8].

Security is characterized as a non-functional requirement

and is a quality attribute which cannot be measured directly,

hence indirect measures should be identified related with the

security aspects and further should be converted into

quantifiable measures using security metrics. Security

metrics is defined as quantifiable measures which show how

much security a product or process simply possess. Security

metrics is normally built from the low level physical

measures and at high level they can be considered as

quantifiable measurements of some aspect of a system [7,

8].

III. STUDY OF EXISTING SOFTWARE METRICS

The growing use of applications mostly web based and

distributed in nature has given rise to the concept of

insecurity due to the presence of wide variety of

vulnerabilities which can be exploited by the attacker to

harm the system. Hence, building security during the

software development process has become essential which

can result in less threat and exploit posed to the system. The

level of security incorporated into the software while

developing it should also be measured to further improve or

control it [8, 9]. It clearly advocates the importance of using

security metrics in development process of software. The

following section discusses the applicability of some

established traditional metrics in measuring the security

level of software.

Size oriented metrics are derived by normalizing any

direct measure with the LOC. It considers the size of the

project that has been used. For the elementary data

contained for each project, a set of simple size-oriented

metrics can be developed as follows i.e., Errors per KLOC

(Kilo lines of code), Defect per KLOC, Cost per KLOC,

Errors per person-month, Documentation per KLOC, LOC

per person-month, Manpower hours per KLOC, Cost per

page of documentation, and Functional Oriented Metrics

[7].

Function oriented metrics proposed by Albrecht uses a

measure called FP (Function Point) as a normalization value

which is delivered by the application. The data is collected

and with each count a complexity value is associated. To

compute function point (FP), the relationship FP = count

total x [0.65 + 0.01 x (Fi)] is used where count total is the

addition of all entries of FP obtained. After the calculation

of function point (FP) they are used similar to LOC to

obtain the following metrics i.e., Errors per FP, Defects per

FP, Cost per FP, Manpower hours per FP, Documentation

per FP, and FP per person month. Since the basic function

points are not sufficient for many organizations certain

advancement were being proposed in the basic function

point and it is known as ‘Extended Function Point Metrics’.

In this an extension of function point known as ‘feature

point’ is considered [7].

DeMarco proposed Bang metrics which is an

implementation independent indication of system size. It is

evaluated using a set of primitives, developing counts for

the following i.e., Functional primitives (FuP), Data

elements (DE), Objects (OB), Relationships (RE), States

(ST), Transitions (TR), Modified manual function

primitives (FuPM), Input data elements (DEI), Output data

elements (DEO), Retained data element (DER), Data tokens

(TCi), and Relationship connections (REi) [7].

In Architectural design metrics, Card and Glass proposed

three software design complexity metrics viz., structural

complexity, data complexity, and system complexity. The

structural complexity provides an indication of the

complexity of module i and is defined as S(i) = f
2
 out

(i)
. For

a module i, data complexity is an indicator of the

complexity in its internal interface and is defined as D(i) =

v(i)/[fout
(i)

 + 1] where v(i) is the number of input variables

passed to and output variables passed from module i. The

system complexity is indication of sum of structural and

data complexity and defined as C(i) = S(i) + D(i) [7].

Component level design metrics comprises those

measures which are related with module coupling, cohesion,

and complexity. It focuses on the internal characteristics of

software component. These measures are indicators of

 International Journal of Advanced Studies in Computer Science & Engineering

IJASCSE Volume 3, Issue 3, 2014

www.ijascse.org Page 20

March 31

quality of a component level design. Bieman and Ott

proposed Cohesion metrics which is an indication of five

concepts and measure i.e., Data slice, Data tokens, Glue

tokens, Superglue tokens, and Stickiness. These metrics

were developed for string functional cohesion (SFC) defined

as SFC(i) = SG [S(i) / (tokens(i))], weak functional

cohesion, and adhesiveness. Dhama has proposed a coupling

metrics for module coupling that encompasses coupling of

data and control flow, along with global coupling, and

environmental coupling. The metrics is an indicator of

module connectedness with that of other modules, global

data, and with the outside environment.

McCabe proposed complexity metrics (cyclomatic

complexity) which provides a quantitative measure of

testing difficult and reliability. It also provides a quantitative

indication of maximum module size. Experimental studies

have also shown distinct relationship between the proposed

metric and the no. of errors in source code and the time

required to find and correct it. Henry and Kafura have also

proposed information flow metric as a complexity metrics

which provides the count of information related to enter and

exit the procedure and accordingly the complexity is

calculated [7].

In Interface design metrics, Sears has proposed layout

appropriateness (LA) according to which, for a specific

layout, cost can assigned to each sequence of actions and

defined as cost = ∑ [frequency of transition (k) x cost of

transition (k)] where ‘k’ is the specific transition from one

layout entity to the next as a specific task is accomplished

[7]. LA is defined as LA = 100 x [(cost of LA – optimal

layout) / (cost of proposed layout)]. In respect to Source

code Metrics, Halstead has identified the programs as a

sequential token consisting of operators and operands. On

the basis of these tokens the length of the program is

calculated. He has made the use of primitive data as well as

derived data or new data for his calculation.

Quality oriented metrics proposed by McCall and his

colleagues is based on defect removal efficiency (DRE) as

the normalization value. It is computed by the equation DRE

= E / (E + D) where ‘E’ is the no of errors found

beforehand the delivery of the software to the end-user and

‘D’ is the no of defects which are found after the software

was delivered. Reliability metrics proposed by S. Henry and

W. Li is based around the system failure probability. The

reliability metrics are (i) MTBF=MTTF+MTTR where

MTTF represents for Mean time to failure, MTTR

represents Mean time to repair, and MTBF represents Mean

time between failure, (ii) Probability of failure on demand

(POFOD), (iii) Rate of failure occurrence (ROCOF), and

(iv) AVAIL=MTTF/(MTTF+MTTR)*100%. This metrics

can be used in the later phases of software development life

cycle as it is based on the probability of system failure [7].

In Object oriented metrics, Chidamber and Kemerer

proposed the CK metrics suite which consists of six class

based design metrics meant for object oriented systems. It

defines class-oriented software metrics whose focus is the

class and its hierarchy using the follows Weighted Method

per Class (WMC), Inheritance Tree Depth (DIT), No. of

Children (NOC), Coupling between the Object Classes

(CBO), Response for Class (RFC), and Lack of Cohesion in

the Methods (LCOM). Lorenz and Kidd proposed a class-

based metrics which was divided into four broad categories

viz., size, inheritance, internals, & externals. It focuses on

the counts of attributes and operations for an individual

class and average values for the OO system as a whole i.e.,

Class Size (CS), No. of Operations Overridden by Subclass

(NOO) , No. of Operations Added by Subclass (NOA), and

Specialization Index (SI) [7, 10].

MOOD metrics suite was proposed by Harrison,

Counsell, and Nithi for object oriented design. It consists of

a set of six metrics as follows i.e., Method Hiding Factor

(MHF) , Attribute Hiding Factor (AHF), Method

Inheritance Factor (MIF), Attribute Inheritance Factor

(AIF), Coupling Factor (CF), and Polymorphism Factor

(PF). Operation oriented metrics was proposed by Lorenz

and Kidd and provides three simple metrics focusing on

individual operation’s size & complexity as follows i.e.,

Size of Average Operation (OSavg), Operation Complexity

(OC), and Average no. of parameters for each operation

(NPavg) [7, 10].

Object oriented testing metrics was proposed by Binder

who suggested a group of design metrics having a direct

control upon the testability of object oriented system. The

metrics are organized into categories as follows i.e., Lack of

cohesion in the methods (LCOM), Percent public &

protected (PAP), Public access to the data members (PAD),

No. of Root classes (NOR), Fan in (FIN), No. of children

(NOC), and Depth of inheritance tree (DIT) [7, 10].

The object oriented project metrics proposed by Lorenz

and Kidd provides insight into the size of software using

following set of project metrics i.e., Number of Scenario

scripts (NSS) ,Number of Key Classes (NKC) , Number of

Subsystems (NSUB) , Number of Support classes (NSC),

and Average no. of support classes per key class [7, 10].

IV. EVALUATION OF EXISTING METRICS FOR SECURITY

IMPLEMENTATION IN SOFTWARE

Traditional metrics lacked the security aspect because

traditional software engineering approach are requirements

driven and may depend upon available tools and the

working environment and focus very little attention to

software security. Among the metrics available in the

 International Journal of Advanced Studies in Computer Science & Engineering

IJASCSE Volume 3, Issue 3, 2014

www.ijascse.org Page 21

March 31

 market, many of them lack a sound theoretical base or a

statistically significant experimental validation as they are

generally based on empirical or historical data. The scope

and limitations of the existing metrics from software

security point of view are discussed below as follows:

Size oriented metrics possess restriction in terms of its

validity and applicability which is a matter of global debate.

According to researchers, their use in estimation is subjected

to details which are not possible to achieve. The LOC

measures used in size oriented metric are programming

language dependent. Also, incorporating them in

nonprocedural language is an issue [7]. Furthermore, the

researcher, so far, have not been able to establish

relationship between the software’s LOC and its security.

Implementation of security from the initial stages of

software development is not possible using LOC as the

value of LOC cannot be measured until the coding process

and which happens at a very later stage of software

development [8]. Based on these limitations, at present, it

may be concluded that there is no scope left for using size

oriented metrics for measuring the security aspect of a

software system.

Determining the complexity of function oriented metrics

is a difficult task as their complexity is subjective. Function

points (FP) computation involves subjective evaluation at

various points which may not provide unique functional

points and hence dependency on analyst is needed. Both

function point and feature point are language independent. It

is considered as an estimation approach due to the fact that

it is based on the data which should be known well in

advance in the beginning of the project. It can be used in

both conventional and nonprocedural languages. Although

function oriented metrics is an indirect metrics still the

scope of using it for measuring the security of software is

limited [7]. The measurement parameters of function

oriented metrics are very different from the parameters

required for measuring the security of a software system

hence not suitable to measure the security of software [11,

12].

The Bang metrics is used to suggest the domain of

software i.e., function strong and data strong depending

upon the ratio RE/FuP [7]. Although, it is a metrics for the

analysis model and is used during the early stages of

software development, yet, the metrics is not suitable for

security aspect of software and only provides the indication

of the size of the software [11, 12].

The software design complexity metrics is a metrics for

design model and is applicable during the design stage of

software development. The metrics suggests that as the

complexity value increases the overall architectural

complexity of the system also increases. It provides an

indicative measure that there is likelihood that integration

and testing efforts will also increase [7]. From security

implementation point of view, nothing is suggested or

proposed. Further, this metrics is relevant during the design

stage and focus on the characteristics of the program

architecture having emphasis on the module effectiveness

and its architectural structure. Hence, this metrics has very

little scope for implementation of security from the early

stages of software development [11, 12].

Component level design metrics requires inner working

of the module under construction. They may be applied

once a procedural design has been developed. These metrics

predicts and reveals the critical information about software’s

reliability and maintainability using automatic analysis of

source code. They help control the design activities. During

testing and maintenance stages, these metrics help in

pinpointing areas of potential instability [7]. The complexity

metrics provide very little about security. These types of

metrics are mostly used in the debugging performance and

maintenance efforts. Security is not the major issue for

complexity metrics and hence this type of metrics does not

serve as a security metrics [11, 12].

In relation to Interface design metrics, very little

information is available and no sound metric has been

published that would provide insight into the quality and

usability of the interface. There is no mention on the

security aspect of the software and hence interface design

metrics is not deemed fit for security implementation in

software development process [7]. Synchronization of

source code metric proposed by Halstead with various

security metrics is yet to be established [8, 11]. Again

security has not been given due importance in this metrics.

As there are no efficient ways or mechanism to count the

defects in software process using Defect Removal

Efficiency Metrics so they are not widely used. Reliability

metrics is also a quality metric and it can be implemented at

the later stages to value how much reliable the security

measures are within the software. This quality metric is

secure as it is based on time constraint measuring failure at a

particular time interval [7, 8]. DRE metrics and reliability

metrics can only be judges in the later stages (i.e.,

implementation, performance reliability etc.) so they cannot

be applied in the initial phase of software development and

hence these type of quality metric are not considered as

potential candidate for security metrics [11, 12].

The methods defined in CK Metrics suite does not state

that whether they belong to one class which defines it or

they belong to many classes which inherit it [7]. As the no

of children will increase so the no. of class inheriting those

methods will also increase resulting in more amount of time

needed for testing security of the software. Lorenz and Kidd

metrics has large number of overridden classes which create

design problems [7]. This type of metric is difficult to test

 International Journal of Advanced Studies in Computer Science & Engineering

IJASCSE Volume 3, Issue 3, 2014

www.ijascse.org Page 22

March 31

and modify so security measures cannot be updated as and

when needed.

In MOOD metrics suite, as the CF increases the

complexity of metrics also increases which result in poor

applicability of qualities like understandability,

maintainability and potential for reuse etc. [7]. Since the

MOOD metrics suite is proposed to be used for object

oriented design stage hence there is no scope of using this

metrics suite for incorporating security ‘right from the

beginning’ i.e., from requirements engineering phase. In

operation oriented metrics, the larger the number of

operation the more complex the metric will be resulting in

inaccurate results [7]. As there are large number of

parameter, and judging the security of each and every

parameter is not possible and cannot be valued before

completion of software development process.

In object oriented testing metrics, as most of the methods

are designed and inherited for public class only so the

chances of secure testing decreases. This also leads to

violation of encapsulation [7]. Adequate security measure

cannot be implemented in the early stages of software

development i.e., requirement stage. In object oriented

project metrics, as size is directly proportional to the efforts

and duration of so the product manager is unaware of

implementation size of the metric. Since the implementation

size is not known in advance so appropriate security

measures cannot be undertaken before implementation of

software.

V. FINDING AND OBSERVATION

Based on the study carried out in the field of software

metrics and its relevance and scope in implementation of

security in software development process following findings

and observations are made:

A. Issues and Challenges

The complexity of security aspect is a very major factor

which impacts the development and management of secure

software. In the current scenario there are very few

measures which can be potential candidate for measuring

the security of software having a reliable, well-defined and

precise evaluation mechanism. Therefore, at present,

precise, accurate and effective estimation for planning and

controlling the security aspects of software engineering is an

issue with the research community which needs to be

explored further. For incorporating security in the software

development process and to measure its effectiveness we

need a comprehensive software metrics whose goal is to (i)

identify the essential security parameters that affect the

secured software process, (ii) measure it, and, (iii) if

required, to control it.

Moreover, from risk point of view, its evaluation may

give rise to a number of causes resulting in security breach

like threats, asset value, and vulnerabilities. It is very

difficult to inculcate all these factors while designing

security metrics as these factors have numerous dimensions

of their own. Although, asset value is the easiest to measure

among the three factors which are mentioned above but in

some cases its measurement proved to contain flaws. Some

of the research and academicians are of the opinion that

threat and vulnerabilities detection is not possible in the

early stage and some argue that it is possible. Another

problem with the security metrics is the issue of its wide

acceptance. The reason behind this belief is that the security

metric is in the early stages of development & there are no

framed terminologies which could be used in totality as

shown in figure 1.

B. Recommendations

Following recommendations are made based on the

study of existing software metrics and its evaluation in

terms of implementation of security aspect in software:

 Software Security Metrics may be designed so that its

implementation is not programming language

dependent.

 Some mechanism may be proposed to establish the

relationship between LOC and security of software.

 The measurement parameters of existing software

metrics may be extended to align it with the parameters

required for measuring the security of a software

system so that the existing metrics becomes suitable for

measuring the security of software.

 The existing software metrics may be extended to make

it independent of software development phase so that

the enhanced software metrics may be used for security

‘right from the beginning’ i.e., the requirements

engineering phase.

C. Proposed Solutions

Based on the research carried out and issues and

challenges discussed, following solutions are proposed

which could be carried out in case of future research

directions in the field of software security metrics:
1) Solution 1: An extension of existing metrics for

measuring the security of software as shown in figure 2.
2) Solution 2: Development of Metrics suite initially

applicable for individual stages for measurement of security
and finally a cumulative measure of all stages may be
calculated and achieved indicating the degree of overall
security of software as shown in figure 3.

3) Solution 3: Development of comprehensive metrics
suite for measuring the security of software with its
applicability ‘right from the beginning’ i.e., the
requirements engineering phase in a waterfall model
approach as shown in figure 4.

4) Solution 4: Development of comprehensive metrics
suite for measuring the security of software with its

 International Journal of Advanced Studies in Computer Science & Engineering

IJASCSE Volume 3, Issue 3, 2014

www.ijascse.org Page 23

March 31

applicability ‘right from the beginning’ i.e., the
requirements engineering phase in a spiral model fashion
as shown in figure 5.

VI. CONCLUSION AND FUTUREWORK

In the present scenario where software security is a

subject of major concern, it is very necessary to safeguard

the software from malicious attacks. It is necessary that

security should be incorporated ‘right from the beginning’

i.e. the requirement stage so we can provide strong and

secure software which may continue to work efficiently in

malicious environment. Any process undertaken to improve

security should be properly measured for its smooth

functioning. The use of security metric has proved as a

potential mechanism to measure the security of software

systems. It is a quantifiable approach of measuring security.

All the metrics which are discussed in this paper are

product metrics and pay less attention to the security of the

software. These types of metrics are generally implemented

in the later stages of the software development so it limits

the applicability of its security aspects. Most of the software

development models available are probabilistic and

pragmatic so in this case the application of software metric

may become difficult and costly.

But the applicability of existing metrics for implementing

security in the software development life cycle has its

limitations. One of the future works includes extending the

existing metrics for implementation of security during the

early development stages of software. A comprehensive set

of metrics suite covering all the stages of software

development can be a potential future work. Another future

work may include a more comprehensive approach in

development of software security metrics with a

synchronized approach with existing traditional metrics

which can address the issue of security implementation in

SDLC ‘right from the beginning’ to produce secure

software.

REFERENCES

[1] C. Banerjee, S. K. Pandey (2009): “Software Security

Rules: SDLC Perspective”, International Journal of

Computer Science and Information Security, IJCSIS,

USA, Vol. 6, No. 1, October 2009, pp. 123-128.

[2] Gary MaGraw: “Software Security – Building Security

In”, Addison-Wesley Software Security Series, 2006

ISBN 0321356705.

[3] Chess, Brian. "Metrics that matter: Quantifying software

security risk." In Workshop on Software Security

Assurance Tools, Techniques, and Metrics, pp. 500-265.

2006.,

[4] Lance Hyden, “IT Security Metrics: A Practical

Framework for Measuring Security & Protecting Data”,

McGraw Hill, 2010

[5] Mukta Narang and Monica Mehrotra, “Security Issue –

A Metrics Pespective”, International Journal of

Information Technology and Knowledge Management,

Vol. 2(2), July-Dec 2010, pp 567-571.

[6] Smriti Jain, Maya Ingle, “Review of Security Metrics in

Software Development Process”, International Journal of

Computer Science and Information Technologies, Vol. 2

(6), 2011, ISSN 0975-9646, pp 2627-2631.

[7] Roger S. Pressman, “Software Engineering a

Practitioner’s Approach”, 7th Edition, McGraw Hill

Publications, 2009, ISBN 978-0073375977.

[8] Sree Ram Kumar T, Sumithra A, Alagarsamy K, “The

Applicability of Existing Metrics for Software Security”,

International Journal of Computer Applications, Volume

8– No.2, October 2010, ISSN 0975-8887, pp 29-33.

[9] Gurdev Singh, et al., “A Study of Security Metrics”,

IJCEM International Journal of Computational

Engineering & Management, Vol. 11, January 2011,

ISSN 2230-7893, pp 22-27.

[10] Amjan Shaik, et al., Statistical Analysis for Object

Oriented Design Software Security Metrics, International

Journal of Engineering Science and Technology, Vol

2(5), 2010, 1136-1142.
[11] Kan, Stephen H., “Metrics and models in software

quality engineering”, Addison-Wesley Longman
Publishing Co., Inc., 2002.

[12] Klasky, Hilda B., "A Study of Software Metrics." PhD
diss., Rutgers, The State University of New Jersey, 2003.

 International Journal of Advanced Studies in Computer Science & Engineering

IJASCSE Volume 3, Issue 3, 2014

www.ijascse.org Page 24

March 31

Figure 1. Present Scenario of Existing Metrics and its applicability from Security point of view in SDLC.

Figure 2. Solution 1: An extension of existing metrics for measuring the security of software

Figure 3. Solution 2: Development of Metrics suite initially applicable for individual stages for measurement of security and finally a cumulative measure of

all stages may be calculated and achieved indicating the degree of overall security of software.

 International Journal of Advanced Studies in Computer Science & Engineering

IJASCSE Volume 3, Issue 3, 2014

www.ijascse.org Page 25

March 31

Figure 4. Solution 3: Development of Metrics suite initially applicable for individual stages for measurement of security and finally a cumulative measure of
all stages may be calculated and achieved indicating the degree of overall security of software.

Figure 5. Solution 4: Development of Metrics suite initially applicable for individual stages for measurement of security and finally a cumulative measure of

all stages may be calculated and achieved indicating the degree of overall security of software.

Security Metrics

Version I

Security Metrics

Version II

Security Metrics

Version III

Security Metrics

Version IV

Security Metrics

Version V

Improvised Security

Metrics Version VI

Final outcome: Comprehensive Security Metrics

