
International Journal of advance studies in Computer Science and Engineering
IJASCSE, Volume 3, Issue 11, November 2014

www.ijascse.org Page 27

Abstract—Parallel processing is considered as todays and future

trend for improving performance of computers. Computing

devices ranging from small embedded systems to big clusters of

computers rely on parallelizing applications to reduce execution

time. Many of current computing systems rely on Non-Uniform

Memory Access (NUMA) based processors architectures. In these

architectures, analyzing and considering the non-uniformity is of

high importance for improving scalability of systems. In this

paper, we analyze and develop a NUMA based approach for the

OpenMP parallel programming model. Our technique applies a

smart threads allocation method and an advanced tasks

scheduling strategy for reducing remote memory accesses and

consequently their extra time consumption. We implemented our

approach within the NANOS runtime system. A set of tests was

conducted using the BOTS benchmarks and results showed the

capacity of our technique in improving the performance of

OpenMP applications especially those dealing with a large

amount of data.

Index Terms— Parallel Programming, OpenMP, NUMA,

Tasks Scheduling, Performance

I. INTRODUCTION

Since decades, the underlying architectures of computers have

been constantly evolving and the new technology advances are

still providing microprocessors with better capacities. The

increasing complexity of applications and the higher number

of functionalities microprocessors need to ensure have led

computer designers to improve drastically these architectures

in order to obtain better performance.

In the last few years, processors manufacturers abandoned

efforts aiming to increase clock speed of modern processors

and decided to study different approaches. These methods are

mainly based on exploiting parallelism in MIMD (Multiple

Instruction Multiple Data) architectures like multi-core and

many-core based ones.

This strategy aims to achieve better computing performance

while reducing or keeping the same level of power

consumption.

Today, parallel based computing is the dominating used

approach for obtaining high performance in current systems.

With the important trend shift of processor development from

uni-core to multi and many-core, designers are encouraged to

parallelize applications. This has urged the need for parallel

programming tools and efficient programming models in order

to deal with growing applications complexity. Proper runtime

systems are also needed to execute parallel applications on

existing cores. OpenMP or Open Multi-Processing is a well-

established programming model used to efficiently code

parallel applications on multi-core architectures. It is a popular

standard commonly employed today in several domains due to

its portability, flexibility and ease-of-use [1, 2, 3].

One of the challenges facing OpenMP and many other

parallel models is their capability of handling parallel

computer architectures with distributed memory. These

architectures which are also named NUMA (Non-Uniform

Memory Access), form a challenge for the programming

models and runtime systems that need to effectively distribute

execution load on available resources.

The need for an effective load distribution becomes of great

importance for applications and benchmarks dealing with high

number of tasks and data. Executing these applications on

NUMA systems without considering hardware architecture

characteristics, has major impact on performance and

produces significant slowdowns.

In this paper, we present our work consisting of developing

and implementing a new extension to an open source and

flexible OpenMP runtime system, so that OpenMP developers

can execute efficiently parallel applications on NUMA

systems. Our system is based on a smart thread to core

allocation and it introduces new task based schedulers to

minimize accesses of threads to distant memory locations.

To present our contribution, this paper is structured as follows:

In the following section we present in some details the basic

characteristics of NUMA architectures and we illustrate the

reason behind our study. In Section III, we show some work

related to ours while in Section IV, we introduce our own

threads management and allocation system. In Section V, we

show the results of our approach and we demonstrate the

obtained improvements. In Section VI, we present the task

schedulers we developed for taking into consideration NUMA

based systems and we illustrate the additional obtained

improvements. Finally, in Section VII we conclude and

present our future work.

Towards Efficient Open MP Strategies for Non-

Uniform Architectures

Oussama Tahan

Department of Computer and Communication Engineering

Lebanese International University (LIU), Beirut, Lebanon

International Journal of advance studies in Computer Science and Engineering
IJASCSE, Volume 3, Issue 11, November 2014

www.ijascse.org Page 28

II. NUMA ARCHITECTURES

These systems are a combination of both UMA (Uniform

Memory Access) [4] and Distributed Memory architectures

[5]. In NUMA based systems, memory is physically

distributed on processors and hence, each processor is directly

connected to a part of the memory to form a node. However,

unlike distributed architectures and similar to UMA,

processors share a global address space. Hence, reading or

writing to a variable on a distant node does not have to go

through explicit data fetch or write requests to a processor

located on that node.

These architectures are called NUMA or Non Uniform

Memory Access because access time to a variable in memory

is not uniform. It may vary depending on location of the

processor and the variable in memory; accessing data in local

memory is faster than accessing distant one. In addition, time

spent to access remote memory locations is not always

identical. It depends on distance separating the core and the

NUMA memory node to which it is trying to access. In most

NUMA architectures, several distances may exist and hence, a

system may have several NUMA factors. NUMA factor is the

ratio between latency for accessing data from local memory

and for accessing distant memory location. In this domain, the

most popular metric to determine distance between two

NUMA nodes is hop. From now on we will refer to distances

between nodes as number of hops. A simple structure of a

NUMA architecture is presented in Figure 1.

Figure 1 Non Uniform Memory Access (NUMA) computer architecture

NUMA systems were conceived to overcome issues of both

UMA and distributed memory architectures by decreasing the

rate and level of bus contention when concurrent memory

accesses are requested and by reducing burden for

programmers when writing parallel applications. However,

applications running on these systems must be carefully

parallelized to reduce overheads of high memory access

latencies.

Many NUMA based systems are employed today in

embedded systems, servers and computing farms domains. We

can mention some examples of NUMA systems like AMD

Opteron based platforms [6], computer architectures based on

Intel Xeon and Intel Nehalem processors family [7], AMD

Magny-Cours based architectures [8], IBM Power6 [9], STI

Cell [10], SuperH [11], Raw Microprocessor based system

[12], TilePro64 [13] and many other architectures.

Lately, this particular type of parallel multi-core

architectures initiated new interesting area of research. This is

to analyze different approaches, for efficiently exploiting

NUMA systems and for providing applications with a way to

obtain better performance and faster execution. In parallel

applications, work balancing and communication latencies

affect dramatically execution time of programs. Therefore,

sharing work between cores and properly handling data

located in memory, are both essential to efficiently execute

parallel programs on NUMA platforms.

Discharging programmers from this difficult and time

consuming task is highly desirable. A parallel application

adapted to a specific NUMA multi-core system may offer

good performance. However, the same application may not

necessarily present good execution time on other systems

since they do not have the same NUMA architecture. For this

reason, implementing NUMA aware programming models,

compilers and runtime systems is essential to reduce

programmers efforts in coding NUMA dedicated and portable

parallel applications for these particular platforms.

III. RELATED WORK

In this research area, very few techniques were studied to

implement NUMA aware OpenMP environment. Some of

them are based on thread-centric OpenMP while others are

based on task-centric model with task scheduling strategies.

A. Existing NUMA based Thread-Centric OpenMP Runtime

ForestGOMP is an OpenMP runtime system that captures

the structure of parallelism in an OpenMP application and

gathers a team of threads issued from the same parallel region

into one same group called bubble [14]. A hardware

architecture detection called hwloc was implemented to detect

different characteristics and features of underlying hardware.

They implemented in this runtime two different thread based

schedulers. One focuses on scheduling and migrating threads

that constitute one bubble in a compact way in order to benefit

from caches shared between cores. Another scheduler is based

on a joint allocation of threads and data to take into

consideration memory affinities defined at user level through

specific interfaces. This runtime system schedules threads of

the same nested parallel region on the same chip through

work-stealing based scheduler. When inter chip work stealing

takes place, stolen threads are those with minimum coupled

memory; data also migrates with stolen thread. This runtime

system showed good improvement in performance for

different applications. However, their approach ignores new

task-centric OpenMP and focuses on old thread-centric

programming model. In this latter, scheduling strategy is

completely related to threads and applications use a great

number of nested parallel regions. Those regions turned out to

be very costly for OpenMP applications.

International Journal of advance studies in Computer Science and Engineering
IJASCSE, Volume 3, Issue 11, November 2014

www.ijascse.org Page 29

In addition, migrating a thread and memory to which it is

coupled is a time costly operation causing loss in performance

when large memory is used.

B. Existing NUMA based OpenMP Task Schedulers

Other OpenMP implementations were also studied recently

in order to take into consideration increasing complexity of

multi-core systems and different NUMA architectures. These

implementations were intended to be task-centric OpenMP

friendly in order to be efficient for future’s task based

OpenMP applications. In these runtime implementations

different task level scheduling strategies were investigated to

dynamically schedule tasks in a NUMA profitable manner. In

[15], an OpenMP tasks work-stealing strategy called

LOCAWR has been implemented within the Nanos runtime

system. LOCAWR relies on extensions added to the task

creation construct of OpenMP. Using these extensions, the

programmer is able to specify start address, scope and size of

shared data elements. At task creation point, the parent task

analyzes this information to detect to which worker thread this

new task should be attached to preserve locality. When this

task is submitted, it will be added to the task queue of worker

thread for which it has affinity. When a thread is idle, it

attempts to pick a task from its own task pool. If empty, it tries

to steal a task from one hop distant worker thread. They

evaluated their approach on few benchmarks running on tile-

based multi-core architecture. They obtained low performance

improvement for these benchmarks when using this scheduler

while both Nanos cilk-based and dynamic breadth-first

schedulers gave better execution time. LOCAWR did not

provide sufficient enhancement because it suffers from load

imbalance in some benchmarks.

In another approach, Olivier et al. [16] introduced a

hierarchical task scheduling strategy called MTS (Multi-

Threaded Shepherds). They implemented an OpenMP task

scheduler as an extension to existing scheduling strategies of

Qthreads library [17] and they compiled OpenMP applications

using ROSE compiler [18]. In their hierarchical approach,

they create a shepherd per chip, thus one shepherd for all cores

of the same chip, considering that these cores share a common

L3 cache memory. Cores located on the same chip share a

common Last In First Out task queue. Worker threads follow a

depth-first scheduling strategy in order to preserve locality.

When a queue is empty, one worker tries to steal tasks from a

randomly chosen distant queue. Their approach showed good

performance on 4-socket Intel Nehalem architecture with 32

cores in total, on 2-socket / 4-chip AMD Magny Cours

architecture and on SGI Altix system. However,

improvements in execution time were mainly for non-data

intensive benchmarks. Other benchmarks did not show

satisfying performance enhancement especially on SGI Altix

system where NUMA nodes are more than one hop distant

away.

IV. INTRODUCING NUMA AWARE THREADS ALLOCATION TO

NANOS

Previous approaches lack an important aspect influencing

performance of applications running on NUMA systems. This

missing feature relies on taking into consideration underlying

hardware architecture to apply good threads to cores allocation

and binding.

In our work, we look into NUMA system architecture on

which we are running the parallel application. More precisely,

we consider positions of cores, nodes and their distances to

correctly bind created threads to available cores.

This approach allows us to enhance thread to core allocation

in a way that number and distance of remote memory accesses

may be reduced. For this purpose, we added to Nanos a first

extension aiming to explore the system’s architecture and

detect number of existing NUMA nodes, distances between

them and number of cores per node. This hardware

exploration technique is inspired from hwloc library. To

obtain this knowledge about underlying hardware, we used

APIs of libNUMA [19] and CPU Affinity [20] Linux libraries

that can be used within C code by including respectively both

#include <numa.h> and #include <sched.h>. libNUMA

offers a programming interface to non-uniform memory access

architectures allowing programmers to obtain different

propoerties of the NUMA hardware. In addition it allows them

to allocate memory on specific nodes. As for CPU Affinity

library, it helps programmers to detect the number of existing

cores in a system and it allows them to define threads to cores

affinities, thus forcing a thread to run on a specific core.

Gathered information allows us to attribute priorities to

different cores of the architecture. We define these priorities at

the start of a program during runtime initialization phase. This

priority can later be changed if any modification of the

hardware has taken place.

In our work, we consider the system and all cores are idle

and there are no already running workloads. In a first priority

attribution level, we assign high priority to cores of the

socket/chip having the largest number of cores attached to the

same NUMA memory node. This is an approach compliant

with NUMA systems, especially with future heterogeneous

architectures where number of cores and type per each

processor or node may vary. This priority value drops off with

decreasing number of cores per NUMA node. If all nodes have

equal number of cores, our technique attributes the same

priority for all cores of the system. When binding threads on

cores directly connected to same memory and in some cases

cache memory, we allow tasks ran by these threads to benefit

from shared hot caches and memory locality. Hence, they may

have less or no distant memory accesses.

International Journal of advance studies in Computer Science and Engineering
IJASCSE, Volume 3, Issue 11, November 2014

www.ijascse.org Page 30

On another hand, an additional value may be combined to

the first computed core priority. This value may be obtained

by analyzing the number of cores located at one and more

hops from target core. This additional priority may be

acquired by assigning for each hop distance a weight. It is a

coefficient number decreasing with growing number of hops.

Therefore, the value we add to priority increases with the

growing number of close cores and may be computed as

presented in Figure 2Error! Reference source not found..

The new value V1 is added to the already found priority

giving a new priority level for the targeted core.

In a second step, we find for each core another value that

may be added to its already computed priority. This new value

is associated with core priorities computed earlier, thus close

cores with higher priorities offer higher value. This second

step is mainly useful for NUMA architectures where several

hop distances may exist [22], in heterogeneous multi-core

processors (heterogeneous by design or due to core defects)

and in case some cores have already been allocated for other

work. The new value may be computed like illustrated in

Figure 3.

The final core priority is the sum of old priority and newly

computed value. The algorithm we have implemented is

shown in Figure 4 . When priorities of cores are found, the

Master thread will set its affinity and binds immediately to the

core that obtained highest priority. Whether located on same

or different nodes, if several cores have the same priority,

Master thread will randomly pick and bind to one of them.

When new worker threads are created by Master thread, they

will be placed as close as possible to its assigned core. When

two or more cores are at equal distance from Master thread’s

core, new worker thread will be assigned to the one with

highest priority. If two or more cores have the same priority,

one of them will be selected randomly. Cores are picked and

bounded to threads in a way that chosen cores are as close as

possible.

Hence, we eliminate unnecessary large inter-threads

distances.

Detecting hardware architecture and setting priorities at

runtime start-up allow us to immediately schedule and bind

Master thread to the best core and node. Hence, initialization

phase of runtime and allocation of data environments take

place on the node closest to all cores. In addition to hardware

architecture detection and priority allocation, we added proper

modifications to Nanos, allowing master and worker threads

runtime related data to be allocated on nodes directly

connected to cores on which these threads will be running.

V. PERFORMANCE EVALUATION OF THREADS ALLOCATION

MODEL

To test our approach, we used benchmarks provided within

Barcelona OpenMP Tasks Suite version 1.1.2 [21]. We ran the

eleven benchmarks on the SunFire X4600 system [22] and we

applied six tests for each one of them. For each test, we used

one of the task scheduling strategies (Breadth-First, Cilk-

based or Work-First) provided within Nanos. In the first set of

three tests, we used the original runtime implementation to

observe effects of these scheduling policies on each

benchmark. These tests are presented within figures of the

following subsection as follows:

 bf-Scheduler is the basic implementation of Nanos using

Breadth-First scheduler;

 Cilkbased-Scheduler is the basic implementation of Nanos

using Cilk-based scheduler;

 wf-Scheduler is the basic implementation of Nanos using

Work-First scheduler.

For the three remaining tests, we used the same schedulers but

this time, we combined them to the thread priority allocation

procedure and NUMA enhancements described in Section IV.

These tests are presented as follows:

 bf-Scheduler-NUMA is the implementation of Nanos using

our NUMA aware modifications and using Breadth-First

scheduler;

 Cilkbased-Scheduler-NUMA is the implementation of

Nanos using our NUMA aware modifications and using Cilk-

based scheduler;

 wf-Scheduler-NUMA is the implementation of Nanos

using our NUMA aware modifications and using Work-First

scheduler.

Let αi be the weight of each possible hop distance in the system,

with αi > αi+1

where i∈H and H=[min-numa-distance, . . . , max-numa-distance].

If i = max-numa-distance then αi+1 = 0.

Let Ni be the number of cores at i hops from target core.

Let Pij be the priority of core with index j where j ∈ {0, . . . , Ni-1}

and located at i hops from target core.

Value V2 is computed as follows: 𝑉2 = 𝛼𝑖 ∗ 𝑃𝑖𝑗𝑗𝑖

Figure 3 New added priority value

Let αi be the weight of each possible hop distance in the system,

with αi>αi+1,

where i ∈ H and H=[min-numa-distance, . . . , max-numa-distance].

If i = max-numa-distance then αi+1 = 0.

Let Ni be the number of cores at i hops from target core.

Value V1 is computed as follows: 𝑉1 = 𝛼𝑖 ∗ 𝑁𝑖𝑖

Figure 2 Priority calculation

International Journal of advance studies in Computer Science and Engineering
IJASCSE, Volume 3, Issue 11, November 2014

www.ijascse.org Page 31

Figure 4 Threads priority allocation algorithm

For each benchmark, we tested Medium or Large inputs

sizes and for each test we took the best result obtained out of

fifty runs. We should note that for some benchmarks no large

inputs size are provided within the suite and therefore we

limited the tests to Medium inputs. Following, we show the

results obtained for some of the benchmarks.

A. Benchmarks Results

 In Figure 5, we show results obtained for Floorplan

benchmark and its different speedups on NUMA architecture.

For two and four active cores, all implementations showed

almost similar and near linear speedups with minor progress

for tests based on Cilk and work-first schedulers. For six or

more threads, tests relying on the two work-stealing

scheduling policies showed better performance than breadth-

first based tests. We obtained maximum speedup using the

Cilk-based scheduler with NUMA aware implementation on

sixteen cores. Adding NUMA aware extensions to Nanos

brought respectively almost 3.18% and 3.14% improvement in

performance over tests based on Cilk and work-first

schedulers without our added changes.

Figure 5 Floorplan benchmark results

SparseLU omp-for version showed results close to those

obtained with the single version. Breadth-first scheduler shows

the worst performance for more than four cores while work-

stealing based tests scale finely with increasing number of

threads. We obtained maximum speedup when running the

benchmark on sixteen cores with a combination of Cilk-based

scheduler and our extensions. Work-first scheduler also leads

to good scalability and obtains 13.97x speedup for sixteen

cores (see Figure 6). Moreover, combining it with NUMA

aware runtime, work-first scheduler yields to 5.24% faster

execution time while with the Cilk-based scheduling policy it

yields 7.01% improvement.

Running FFT benchmark allows us to clearly identify the

weakness of breadth-first scheduler for applications dealing

with large amounts of data and tasks. In addition, it shows the

importance of our implemented runtime modifications to

obtain better performance. FFT is a benchmark that generates

around 10M tasks for medium inputs set and 19M tasks for

large inputs set. In addition, when using medium inputs, the

benchmark’s memory utilization is around 6 GBytes while it

grows up to 13 GBytes of memory for the large inputs set.

When using breadth-first scheduling policy, a thread may pick

any task from shared queue of tasks and hence, allows good

load balancing. However, a new task selected from shared task

pool may probably execute on data not been recently used by

the same thread. Hence, data locality is not preserved and

local caches are not efficiently exploited.

Figure 6 SparseLU_for benchmark speedup

International Journal of advance studies in Computer Science and Engineering
IJASCSE, Volume 3, Issue 11, November 2014

www.ijascse.org Page 32

Cilk-based and work-first schedulers solve this issue and

preserve data locality by applying depth-first scheduling

mechanism. When parent task suspends itself and spawns a

new one, it will share data with its child task. Since a copy of

this shared data may still be hot in the core’s two level caches,

number of cache misses may be significantly reduced.

Figure 7 FFT benchmark results

In Figure 7 we notice that breadth-first scheduler increases

speedup of the benchmark to a maximum value of 4.43x when

using up to six cores. Nevertheless, when running on more

than six cores, we detect significant loss in performance with

growing number of threads and speedup decreases to reach

2.39x for sixteen cores. Our added NUMA extensions helped

improving performance of this scheduler but high queue

contentions, important cache misses and high latencies due to

distant memory accesses prevent the benchmark from

obtaining better speedup.

Work-stealing based implementations, all showed poorer

performance than breadth-first when running on two cores.

However, they got almost similar execution times when four

cores are used except for work-first scheduler combined with

our Nanos extensions. This latter runs 8% faster than the

combination with the breadth-first scheduler.

When using six or more cores, both Cilk-based and work-

first scheduling based implementations obtained good

speedups reaching respectively 8.61x and 9.3x for sixteen

active cores. Combining these schedulers with our runtime

modifications reduced noticeably execution time of FFT where

Cilk-based scheduler brought 9.92x speedup to the

benchmark. In addition, work-first offered 10.55% faster

execution time than Cilk to reach 11.09x speedup.

Like FFT, Strassen requires high memory utilization and

consumes around 7 GBytes of memory. Therefore, exploiting

data locality is important to benefit from hot caches, reduce

distant memory accesses and hence, obtain better

improvements in performance.

We notice in Figure 8 that all schedulers showed good

performance for different number of active cores. For this

benchmark, work-first outperforms other two schedulers for

all number of threads and obtains a maximum speed up of

about 9.15x when running on sixteen cores.

When NUMA adjustments are applied to Nanos, we can

clearly see its efficiency in enhancing performance of the

application for all used task schedulers. The best two speedups

were obtained when sixteen threads were used, for both Cilk-

based and work-first scheduling policies combined with our

modifications. Both respectively obtain 8.13x and 10.27x

speedups.

Figure 8 Strassen benchmark speedup

Sort is another benchmark requiring high memory utilization

reaching 8.5 GBytes with large input set, with a high number

of generated tasks. Figure 9 shows the speedup of Sort

benchmark using the different implementations. When two

cores are active, work-first obtains the best speedup of 1.86x

while Cilk-based scheduler runs 5% slower.

Figure 9 Sort benchmark speedup

For this benchmark, breadth-first shows the worst performance

with increasing number of cores because data locality is not

preserved and high task queue contentions emerge when using

this scheduler. As for remaining implementations based on

work-stealing scheduling policies, they both show good

improvement in performance. On sixteen active cores, both

Cilk-based and work-first schedulers obtain respectively 5.49x

and 5.41x speedups. When our modifications are added to

Nanos, we obtain respectively 9.17% and 10.06% faster

execution time.

For NQueens benchmark, almost all schedulers and

implementations brought good speedups for different used

threads count.

International Journal of advance studies in Computer Science and Engineering
IJASCSE, Volume 3, Issue 11, November 2014

www.ijascse.org Page 33

For two and four active cores, all implementations showed

similar execution time with linear and super-linear speedups.

However, we can see through Figure 10 that when four or

more cores are running, NQueens gets its best performance

with breadth-first scheduler. This is due to scheduler’s

effectiveness in balancing the benchmark’s workload. NUMA

extensions applied to Nanos improved performances of all

schedulers. When using breadth-first scheduler alone, the

benchmark showed linear and super-linear speedups for

almost all number of threads and it obtained on sixteen cores,

a maximum speedup of 15.93x over its serial execution time.

When adding our NUMA extensions, the benchmark runs

1.35% faster than the basic implementation for sixteen

threads.

Figure 10 NQueens benchmark speedup

B. Benchmarks Results Analysis

After analyzing results obtained in this section, we may

clearly notice effectiveness of applying NUMA aware

modifications to the runtime system in order to reduce

execution time. We noticed an improvement in performance

for almost all studied benchmarks. However, this progress in

execution time and effects of our approach on speedup differ

from a benchmark to another.

We may see through results that our model influences data

intensive benchmarks dealing with large amount of data and

tasks like FFT, Strassen and Sort. This high efficiency is due

to our technique assorted with first-touch NUMA policy.

In modern operating systems (Microsoft Windows, Linux,

etc.), a first-touch policy for memory allocation is used when

running on NUMA architectures. This policy consists in

suspending allocation of physical memory by the operating

system to the instant where memory is first accessed through

read or write. The operating system will try to allocate pages

from local physical node of the CPU having a first read or

write memory access to this allocated memory. When not

enough free memory is available on that node, allocation falls

back to closest nodes [23, 24].

With NUMA aware runtime, master thread runs on the node

with highest priority. Hence, it allocates data on the best main

and nearby nodes of the architecture (those located as close as

possible to all existing cores and to each other). Using basic

Nanos implementation, these data are allocated by the

operating system on the first node of the architecture.

This causes loss in performance for applications running on

NUMA based architectures where several core to memory hop

distances exist and where memory allocation on the first node

is not ideal to obtain good speedups. Sunfire X4600 is an

example of these computer architectures and we showed how

our method may help improving performance of data and task

intensive applications.

VI. IMPLEMENTING NUMA AWARE TASK SCHEDULERS

Task scheduling is an essential feature in runtime systems.

OpenMP task-centric parallel programming model relies on

different task scheduling strategies provided within Nanos.

This is in order to efficiently schedule generated tasks on

underlying parallel processing units, thus obtaining lower

execution time.

Today, scheduling strategies provided for OpenMP are not

ideal for NUMA based systems. Therefore, applying basic

scheduling strategies described earlier (breadth-first, Cilk

based and work-first) may not be optimal for applications

running on NUMA; especially those applications dealing with

high number of tasks and data.

For this purpose, in addition to threads-to-cores allocation

technique we presented earlier, we discuss in the following,

two NUMA aware task scheduling strategies we implemented

in Nanos then we will study their effects on few benchmarks.

A. DFWSPT Scheduler

In order to take into consideration architectures with

varying inter-core distances and memory access latencies, we

developed DFWSPT; a depth first scheduler with NUMA

aware work stealing. DFWSPT or Depth-First Work-Stealing

Priority Threads scheduler is based on a depth-first strategy

where each newly spawned task is executed immediately,

while its parent is queued in the task pool of the thread on

which is has been running. Task queuing takes place in front

of the task pool.

At startup, a specific list of threads will be affected for each

thread of the team. This list, we call it priority list, contains

identification numbers of other threads of the team. These

threads are ranked in a priority based manner. Threads

assigned to close cores have higher priority than those running

on far cores. For example, let us consider that thread #0 is

running on core #0, thread #1 on core #1 and thread #2 on

core #2 with core #1 located at one hop from core #0 while

core #2 is at two hops from core #0.

According to thread #0, thread #1 will have higher priority

than thread #2 and hence, it will be placed in the priority list

before this latter. If several cores turned out to be at equal

distance from target core, threads are placed according to their

identification number. Threads with smaller id are placed first.

When a thread is idle, it will first look in its own local queue

for a task to execute.

International Journal of advance studies in Computer Science and Engineering
IJASCSE, Volume 3, Issue 11, November 2014

www.ijascse.org Page 34

If there are no tasks to execute, it will start looking for tasks in

other queues. However, to do it in a NUMA aware manner,

the thread will look into task pools of threads in a priority

based order. It will sweep the priority list and checks the pool

of tasks of each encountered thread until the end of priority

threads array or until a task is picked for execution. Tasks are

stolen from the back of the queue of tasks. A general

explanation of DFWSPT is shown in Figure 12.

Figure 11 DFWSPT tasks scheduler

B. DFWSRPT Scheduler

In a similar approach, we implemented this new scheduler

within Nanos. Like previously introduced scheduler,

DFWSRPT or Depth-First Work-Stealing Random Priority

Threads scheduler requires newly created task to execute

immediately, while its parent task is queued in the task pool

(depth-first mechanism). In addition, a work-stealing

mechanism is employed for workload balancing. Like

DFWSPT, utilized work-stealing mechanism is NUMA aware

and based on priority threads list. However, a victim thread is

picked randomly to check its task pool for tasks to execute.

This means that when a thread is idle, it will attempt to steal a

task from its own task pool first. If empty, it will try to steal a

task from another thread located as close as possible to it.

When several threads are at equal distance from the idle

thread, whether located on the same NUMA node or not, it

will randomly choose its victim thread. Hence, it does not

choose its victim thread according to its smaller identification

number (see Figure 12). Randomizing thread’s selection

mechanism may allow applications to avoid contentions that

happen when several threads try to steal tasks from the closest

thread holding the lowest thread id.

Figure 12 DFWSRPT tasks scheduler

C. Performance evaluation of task schedulers

In order to analyze effects of our implemented task

scheduling strategies, we studied the behavior of the

benchmarks using these schedulers combined with priority

threads allocation feature introduced in Section IV. We used

for our tests the X4600 system and we conducted our tests on

the different benchmarks. The majority of the benchmarks

showed an improvement in performance. In this paper, FFT,

Strassen and Sort benchmarks results are studied. We chose

these three applications because they turned out to have the

best improvements. This is due to the fact that they deal with

large number of tasks and they require high amount of

memory. Therefore, they require NUMA aware task

schedulers to improve their performance. Following, we show

the results of our schedulers.

1) FFT

In Figure 13 we show FFT speedup when using work-first

scheduler combined to NUMA aware threads allocation and

we compare it to its speedup using the two proposed task

scheduling strategies, also combined to the previously

introduced threads allocation technique.

Figure 13 FFT Speedup with NUMA aware task schedulers

Results show that DFWSPT improved performance of FFT

and allowed the benchmark to reach a speedup of 11.78x on

sixteen threads.

International Journal of advance studies in Computer Science and Engineering
IJASCSE, Volume 3, Issue 11, November 2014

www.ijascse.org Page 35

Hence, when using DFWSPT, FFT runs 5.85% faster than its

execution time using work-first for sixteen active cores.

DFWSRPT scheduler showed execution performance almost

similar to DFWSPT. Both introduced schedulers improved

FFT performance, mainly because they reduce the number of

costly remote memory accesses whether these accesses aim to

steal tasks or to read from and write to a memory location

during application computation.

2) Sort

Same as FFT, both NUMA aware task schedulers brought

almost similar performance improvements to Sort benchmark

(see Figure 14). NUMA aware threads allocation model,

combined to work-first scheduler, overcomes the other two

schedulers for two and four active cores. But for six and eight

cores, both DFWSPT and DFWSRPT enhanced performance

of Sort and offered slightly better speedup than work-first

based model. In addition, for more active cores, both

introduced schedulers gained over the basic scheduler where

DFWSPT obtained 6.32x speedup for sixteen cores to execute

the benchmark 4.76% faster than with work-first.

Figure 14 Sort speedup with NUMA aware task schedulers

3) Strassen

Like both FFT and Sort, Strassen makes good use of

NUMA aware schedulers on X4600 to reduce its execution

time. When four or more cores are active, both DFWSPT and

DFWSRPT show better performance than work-first scheduler

since remote memory accesses are significantly reduced. For

Strassen, random based NUMA aware task scheduler brought

better performance than DFWSPT mostly since the benchmark

produces high number of task stealing between threads. For

sixteen active cores, DFWSRPT can obtain a speedup of

almost 12.38x over serial execution time, thus obtaining

17.03% faster execution time than with work-first based

scheduler (see Figure 15).

Figure 15 Strassen speedup with NUMA aware task schedulers

VII. CONCLUSION & FUTURE WORKS

In this paper, we presented threads and tasks management

models allowing Nanos runtime system to provide better

efficiency for OpenMP parallel applications running on

NUMA based architectures. In a first approach, we added a

portable and adaptable model that generates a priority value

for each core of the architecture depending on the number of

close cores. Moreover, we made modifications to the runtime

in order to allocate each thread’s runtime system related data

to the thread’s attached memory. In addition, we introduced to

Nanos two NUMA aware task scheduling strategies taking

into consideration positions of cores when stealing tasks.

These add-ons proved good efficiency when running BOTS

benchmarks on a sixteen core NUMA machine, especially for

data and task intensive benchmarks. Moreover, applying this

NUMA aware approach within the redundancy technique

helped significantly improve performance of these

benchmarks.

This work and results encourage us to analyze the

performance of applications using our models on other

hardware architectures. Moreover, since power consumption is

an important aspect in large scale and embedded computing,

building power efficient task scheduling strategies may also be

considered as good candidate subject for future works.

REFERENCES

[1] R. Altenfeld, M. Apel, D. an Mey, B. Böttger, S. Benke, and C. Bischof

, Parallelising computational microstructure simulations for metallic
materials with openmp, in Proceedings of the 7th international

conference on OpenMP in the Petascale era, IWOMP’11, Chicago,

Illinois, USA, june 2011, Springer-Verlag, pp. 1–11.

[2] P. Kapinos and D. Mey, Parallel simulation of bevel gear cutting

processes with openmp tasks, in Proceedings of the 5th International
Workshop on OpenMP: Evolving OpenMP in an Age of Extreme

Parallelism, IWOMP ’09, Dresden, Germany, June 2009, Springer-

Verlag, pp. 1–14.
[3] M. S. Rasmussen, M. B. Stuart, and S. Karlsson , Parallelism and

scalability in an image processing application, in Proceedings of the 4th

international conference on OpenMP in a new era of parallelism,
IWOMP’08, West Lafayette, IN, USA, May 2008, Springer-Verlag, pp.

158–169.

[4] Mohsan Tanveer, Aqeel M Iqbal and Farooque Azam. Article:
Using Symmetric Multiprocessor Architectures for High

Performance Computing Environments. International Journal of

Computer Applications 27(9):1-6, August 2011.

International Journal of advance studies in Computer Science and Engineering
IJASCSE, Volume 3, Issue 11, November 2014

www.ijascse.org Page 36

[5] D. Culler, J. Singh, and A. Gupta, Parallel computer architecture: A
hardware/software approach, Morgan Kaufmann, 1st ed., 1998. The

Morgan Kaufmann Series in Computer Architecture and Design.

[6] The amd opteron specifications, June 2012. http://products.amd.com/en-
us/OpteronCPUResult.aspx.

[7] The intel xeon processors family overview, june 2012. Available:

http://www.intel.com/p/en_US/embedded/hwsw/hardware/xeon-
previous .

[8] The amd magny-cours, opteron 6000 series, june 2012. Available:

http://www.amd.com/us/products/server/processors/6000-series-
platform/pages/6000-series-platform.aspx .

[9] H. Q. Le, W. J. Starke, J. S. Fields, F. P. O’Connell, D. Q.Nguyen, B. J.

Ronchetti, W. M. Sauer, E. M. Schwarz, and M. T. Vaden , Ibm power6
microarchitecture, IBM Journal of Research and Development, 51

(2007), pp. 639–662.

[10] Ibm sti cell processor, june 2012. Available:
http://www.304.ibm.com/businesscenter/venturedevelopment/us/en/feat

urearticle/gcl_xmlid/8649/nav_id/emerging .

[11] P. Mundt , Asymmetric numa : Multiple-memory management for the
rest of us, System, Vol. N/A (2007), pp. 1–5.

[12] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald,

H. Hoffman, P. Johnson, J.-W. Lee, W. Lee, A. Ma, A. Saraf, M.
Seneski, N. Shnidman, V. Strumpen, M. Frank, S. Amarasinghe, and A.

Agarwal , The raw microprocessor: A computational fabric for software

circuits and general-purpose programs, IEEE Micro, 22 (2002), pp. 25–
35.

[13] The tilepro64 processor, june 2012. Available:
http://www.tilera.com/products/processors/TILEPRO64 .

[14] F. Broquedis, O. Aumage, B. Goglin, S. Thibault, P.-A. Wacrenier, and

R. Namyst, Structuring the execution of openmp applications for
multicore architectures, in IPDPS, Atlanta, Georgia, USA, April 2010,

pp. 1–10.

[15] A. Muddukrishna, Exploiting locality in openmp tasks, KTH, Sweden,
2010.

[16] S. L. Olivier, A. K. Porterfield, K. B. Wheeler, M. Spiegel, and J. F.

Prins, Openmp task scheduling strategies for multicore numa systems,
International Jounral of High Performance Computing Applications, 26

(2012), pp. 110–124.

[17] The qthreads library homepage, sandia national laboratories, june 2012

Available: http://www.cs.sandia.gov/qthreads .

[18] The rose compiler homepage, october 2012. Available:

http://www.rosecompiler.org.
[19] Libnuma library, october 2012. Available:

http://linux.die.net/man/3/numa .

[20] Cpu affinity library, september 2012. Available:
www.gnu.org/software/libc/manual/html_node/CPU-Affinity.html .

[21] Barcelona openmp task suite homepage, july 2012. Available:
https://pm.bsc.es/projects/bots .

[22] N. Hashizume , Architecture and performance overview, tech. report,

Sun Microsystems, Sun BluePrints On-Line, February 2007.
[23] Linux man page, set memory policy, october 2012. Available:

http://linux.die.net/man/2/set_mempolicy.
[24] P. Kaminski, Numa aware heap memory manager, tech. report, AMD,

2010.

http://www.intel.com/p/en_US/embedded/hwsw/hardware/xeon-previous
http://www.intel.com/p/en_US/embedded/hwsw/hardware/xeon-previous
http://www.amd.com/us/products/server/processors/6000-series-platform/pages/6000-series-platform.aspx
http://www.amd.com/us/products/server/processors/6000-series-platform/pages/6000-series-platform.aspx
http://www.304.ibm.com/businesscenter/venturedevelopment/us/en/featurearticle/gcl_xmlid/8649/nav_id/emerging
http://www.304.ibm.com/businesscenter/venturedevelopment/us/en/featurearticle/gcl_xmlid/8649/nav_id/emerging
http://www.tilera.com/products/processors/TILEPRO64
http://www.cs.sandia.gov/qthreads
http://www.rosecompiler.org/
http://linux.die.net/man/3/numa
http://www.gnu.org/software/libc/manual/html_node/CPU-Affinity.html
https://pm.bsc.es/projects/bots
http://linux.die.net/man/2/set_mempolicy

