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Abstract—Parallel processing is considered as todays and future 

trend for improving performance of computers. Computing 

devices ranging from small embedded systems to big clusters of 

computers rely on parallelizing applications to reduce execution 

time. Many of current computing systems rely on Non-Uniform 

Memory Access (NUMA) based processors architectures. In these 

architectures, analyzing and considering the non-uniformity is of 

high importance for improving scalability of systems. In this 

paper, we analyze and develop a NUMA based approach for the 

OpenMP parallel programming model. Our technique applies a 

smart threads allocation method and an advanced tasks 

scheduling strategy for reducing remote memory accesses and 

consequently their extra time consumption. We implemented our 

approach within the NANOS runtime system. A set of tests was 

conducted using the BOTS benchmarks and results showed the 

capacity of our technique in improving the performance of 

OpenMP applications especially those dealing with a large 

amount of data.  

 
Index Terms— Parallel Programming, OpenMP, NUMA, 

Tasks Scheduling, Performance  

 

I. INTRODUCTION 

Since decades, the underlying architectures of computers have 

been constantly evolving and the new technology advances are 

still providing microprocessors with better capacities. The 

increasing complexity of applications and the higher number 

of functionalities microprocessors need to ensure have led 

computer designers to improve drastically these architectures 

in order to obtain better performance.  

In the last few years, processors manufacturers abandoned 

efforts aiming to increase clock speed of modern processors 

and decided to study different approaches. These methods are 

mainly based on exploiting parallelism in MIMD (Multiple 

Instruction Multiple Data) architectures like multi-core and 

many-core based ones. 

This strategy aims to achieve better computing performance 

while reducing or keeping the same level of power 

consumption. 

Today, parallel based computing is the dominating used 

approach for obtaining high performance in current systems. 

With the important trend shift of processor development from 

uni-core to multi and many-core, designers are encouraged to 

 
 

parallelize applications. This has urged the need for parallel 

programming tools and efficient programming models in order 

to deal with growing applications complexity. Proper runtime 

systems are also needed to execute parallel applications on 

existing cores. OpenMP or Open Multi-Processing is a well-

established programming model used to efficiently code 

parallel applications on multi-core architectures. It is a popular 

standard commonly employed today in several domains due to 

its portability, flexibility and ease-of-use [1, 2, 3]. 

 

One of the challenges facing OpenMP and many other 

parallel models is their capability of handling parallel 

computer architectures with distributed memory. These 

architectures which are also named NUMA (Non-Uniform 

Memory Access), form a challenge for the programming 

models and runtime systems that need to effectively distribute 

execution load on available resources. 

The need for an effective load distribution becomes of great 

importance for applications and benchmarks dealing with high 

number of tasks and data. Executing these applications on 

NUMA systems without considering hardware architecture 

characteristics, has major impact on performance and 

produces significant slowdowns. 

  

In this paper, we present our work consisting of developing 

and implementing a new extension to an open source and 

flexible OpenMP runtime system, so that OpenMP developers 

can execute efficiently parallel applications on NUMA 

systems. Our system is based on a smart thread to core 

allocation and it introduces new task based schedulers to 

minimize accesses of threads to distant memory locations. 

 

To present our contribution, this paper is structured as follows: 

In the following section we present in some details the basic 

characteristics of NUMA architectures and we illustrate the 

reason behind our study. In Section III, we show some work 

related to ours while in Section IV, we introduce our own 

threads management and allocation system. In Section V, we 

show the results of our approach and we demonstrate the 

obtained improvements. In Section VI, we present the task 

schedulers we developed for taking into consideration NUMA 

based systems and we illustrate the additional obtained 

improvements. Finally, in Section VII we conclude and 

present our future work. 
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II. NUMA ARCHITECTURES 

These systems are a combination of both UMA (Uniform 

Memory Access) [4] and Distributed Memory architectures 

[5]. In NUMA based systems, memory is physically 

distributed on processors and hence, each processor is directly 

connected to a part of the memory to form a node. However, 

unlike distributed architectures and similar to UMA, 

processors share a global address space. Hence, reading or 

writing to a variable on a distant node does not have to go 

through explicit data fetch or write requests to a processor 

located on that node. 

 

These architectures are called NUMA or Non Uniform 

Memory Access because access time to a variable in memory 

is not uniform. It may vary depending on location of the 

processor and the variable in memory; accessing data in local 

memory is faster than accessing distant one. In addition, time 

spent to access remote memory locations is not always 

identical. It depends on distance separating the core and the 

NUMA memory node to which it is trying to access. In most 

NUMA architectures, several distances may exist and hence, a 

system may have several NUMA factors. NUMA factor is the 

ratio between latency for accessing data from local memory 

and for accessing distant memory location. In this domain, the 

most popular metric to determine distance between two 

NUMA nodes is hop. From now on we will refer to distances 

between nodes as number of hops. A simple structure of a 

NUMA architecture is presented in Figure 1. 

 

 
Figure 1 Non Uniform Memory Access (NUMA) computer architecture 

 

NUMA systems were conceived to overcome issues of both 

UMA and distributed memory architectures by decreasing the 

rate and level of bus contention when concurrent memory 

accesses are requested and by reducing burden for 

programmers when writing parallel applications. However, 

applications running on these systems must be carefully 

parallelized to reduce overheads of high memory access 

latencies. 

Many NUMA based systems are employed today in 

embedded systems, servers and computing farms domains. We 

can mention some examples of NUMA systems like AMD 

Opteron based platforms [6], computer architectures based on 

Intel Xeon and Intel Nehalem processors family [7], AMD 

Magny-Cours based architectures [8], IBM Power6 [9], STI  

 

Cell [10], SuperH [11], Raw Microprocessor based system 

[12], TilePro64 [13] and many other architectures. 

 

Lately, this particular type of parallel multi-core 

architectures initiated new interesting area of research. This is 

to analyze different approaches, for efficiently exploiting 

NUMA systems and for providing applications with a way to 

obtain better performance and faster execution. In parallel 

applications, work balancing and communication latencies 

affect dramatically execution time of programs. Therefore, 

sharing work between cores and properly handling data 

located in memory, are both essential to efficiently execute 

parallel programs on NUMA platforms. 

 

Discharging programmers from this difficult and time 

consuming task is highly desirable. A parallel application 

adapted to a specific NUMA multi-core system may offer 

good performance. However, the same application may not 

necessarily present good execution time on other systems 

since they do not have the same NUMA architecture. For this 

reason, implementing NUMA aware programming models, 

compilers and runtime systems is essential to reduce 

programmers efforts in coding NUMA dedicated and portable 

parallel applications for these particular platforms. 

III.  RELATED WORK 

In this research area, very few techniques were studied to 

implement NUMA aware OpenMP environment. Some of 

them are based on thread-centric OpenMP while others are 

based on task-centric model with task scheduling strategies.  

A. Existing NUMA based Thread-Centric OpenMP Runtime 

ForestGOMP is an OpenMP runtime system that captures 

the structure of parallelism in an OpenMP application and 

gathers a team of threads issued from the same parallel region 

into one same group called bubble [14]. A hardware 

architecture detection called hwloc was implemented to detect 

different characteristics and features of underlying hardware. 

They implemented in this runtime two different thread based 

schedulers. One focuses on scheduling and migrating threads 

that constitute one bubble in a compact way in order to benefit 

from caches shared between cores. Another scheduler is based 

on a joint allocation of threads and data to take into 

consideration memory affinities defined at user level through 

specific interfaces. This runtime system schedules threads of 

the same nested parallel region on the same chip through 

work-stealing based scheduler. When inter chip work stealing 

takes place, stolen threads are those with minimum coupled 

memory; data also migrates with stolen thread. This runtime 

system showed good improvement in performance for 

different applications. However, their approach ignores new 

task-centric OpenMP and focuses on old thread-centric 

programming model. In this latter, scheduling strategy is 

completely related to threads and applications use a great 

number of nested parallel regions. Those regions turned out to 

be very costly for OpenMP applications.  
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In addition, migrating a thread and memory to which it is 

coupled is a time costly operation causing loss in performance 

when large memory is used. 

B. Existing NUMA based OpenMP Task Schedulers 

Other OpenMP implementations were also studied recently 

in order to take into consideration increasing complexity of 

multi-core systems and different NUMA architectures. These 

implementations were intended to be task-centric OpenMP 

friendly in order to be efficient for future’s task based 

OpenMP applications. In these runtime implementations 

different task level scheduling strategies were investigated to 

dynamically schedule tasks in a NUMA profitable manner. In 

[15], an OpenMP tasks work-stealing strategy called 

LOCAWR has been implemented within the Nanos runtime 

system. LOCAWR relies on extensions added to the task 

creation construct of OpenMP. Using these extensions, the 

programmer is able to specify start address, scope and size of 

shared data elements. At task creation point, the parent task 

analyzes this information to detect to which worker thread this 

new task should be attached to preserve locality. When this 

task is submitted, it will be added to the task queue of worker 

thread for which it has affinity. When a thread is idle, it 

attempts to pick a task from its own task pool. If empty, it tries 

to steal a task from one hop distant worker thread. They 

evaluated their approach on few benchmarks running on tile-

based multi-core architecture. They obtained low performance 

improvement for these benchmarks when using this scheduler 

while both Nanos cilk-based and dynamic breadth-first 

schedulers gave better execution time. LOCAWR did not 

provide sufficient enhancement because it suffers from load 

imbalance in some benchmarks. 

 

In another approach, Olivier et al. [16] introduced a 

hierarchical task scheduling strategy called MTS (Multi-

Threaded Shepherds). They implemented an OpenMP task 

scheduler as an extension to existing scheduling strategies of 

Qthreads library [17] and they compiled OpenMP applications 

using ROSE compiler [18]. In their hierarchical approach, 

they create a shepherd per chip, thus one shepherd for all cores 

of the same chip, considering that these cores share a common 

L3 cache memory. Cores located on the same chip share a 

common Last In First Out task queue. Worker threads follow a 

depth-first scheduling strategy in order to preserve locality. 

When a queue is empty, one worker tries to steal tasks from a 

randomly chosen distant queue. Their approach showed good 

performance on 4-socket Intel Nehalem architecture with 32 

cores in total, on 2-socket / 4-chip AMD Magny Cours 

architecture and on SGI Altix system. However, 

improvements in execution time were mainly for non-data 

intensive benchmarks. Other benchmarks did not show 

satisfying performance enhancement especially on SGI Altix 

system where NUMA nodes are more than one hop distant 

away. 

 

 

IV. INTRODUCING NUMA AWARE THREADS ALLOCATION TO 

NANOS 

 

Previous approaches lack an important aspect influencing 

performance of applications running on NUMA systems. This 

missing feature relies on taking into consideration underlying 

hardware architecture to apply good threads to cores allocation 

and binding. 

In our work, we look into NUMA system architecture on 

which we are running the parallel application. More precisely, 

we consider positions of cores, nodes and their distances to 

correctly bind created threads to available cores. 

 

This approach allows us to enhance thread to core allocation 

in a way that number and distance of remote memory accesses 

may be reduced. For this purpose, we added to Nanos a first 

extension aiming to explore the system’s architecture and 

detect number of existing NUMA nodes, distances between 

them and number of cores per node. This hardware 

exploration technique is inspired from hwloc library. To 

obtain this knowledge about underlying hardware, we used 

APIs of libNUMA [19] and CPU Affinity [20] Linux libraries 

that can be used within C code by including respectively both 

#include <numa.h> and #include <sched.h>. libNUMA 

offers a programming interface to non-uniform memory access 

architectures allowing programmers to obtain different 

propoerties of the NUMA hardware. In addition it allows them 

to allocate memory on specific nodes. As for CPU Affinity 

library, it helps programmers to detect the number of existing 

cores in a system and it allows them to define threads to cores 

affinities, thus forcing a thread to run on a specific core. 

 

Gathered information allows us to attribute priorities to 

different cores of the architecture. We define these priorities at 

the start of a program during runtime initialization phase. This 

priority can later be changed if any modification of the 

hardware has taken place. 

 

In our work, we consider the system and all cores are idle 

and there are no already running workloads. In a first priority 

attribution level, we assign high priority to cores of the 

socket/chip having the largest number of cores attached to the 

same NUMA memory node. This is an approach compliant 

with NUMA systems, especially with future heterogeneous 

architectures where number of cores and type per each 

processor or node may vary. This priority value drops off with 

decreasing number of cores per NUMA node. If all nodes have 

equal number of cores, our technique attributes the same 

priority for all cores of the system. When binding threads on 

cores directly connected to same memory and in some cases 

cache memory, we allow tasks ran by these threads to benefit 

from shared hot caches and memory locality. Hence, they may 

have less or no distant memory accesses. 
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On another hand, an additional value may be combined to 

the first computed core priority. This value may be obtained 

by analyzing the number of cores located at one and more 

hops from target core. This additional priority may be 

acquired by assigning for each hop distance a weight. It is a 

coefficient number decreasing with growing number of hops. 

Therefore, the value we add to priority increases with the 

growing number of close cores and may be computed as 

presented in Figure 2Error! Reference source not found.. 

The new value V1 is added to the already found priority 

giving a new priority level for the targeted core. 

In a second step, we find for each core another value that 

may be added to its already computed priority. This new value 

is associated with core priorities computed earlier, thus close 

cores with higher priorities offer higher value. This second 

step is mainly useful for NUMA architectures where several 

hop distances may exist [22], in heterogeneous multi-core 

processors (heterogeneous by design or due to core defects) 

and in case some cores have already been allocated for other 

work. The new value may be computed like illustrated in 

Figure 3. 

 

The final core priority is the sum of old priority and newly 

computed value. The algorithm we have implemented is 

shown in Figure 4 . When priorities of cores are found, the 

Master thread will set its affinity and binds immediately to the 

core that obtained highest priority. Whether located on same 

or different nodes, if several cores have the same priority, 

Master thread will randomly pick and bind to one of them. 

When new worker threads are created by Master thread, they 

will be placed as close as possible to its assigned core. When 

two or more cores are at equal distance from Master thread’s 

core, new worker thread will be assigned to the one with 

highest priority. If two or more cores have the same priority, 

one of them will be selected randomly. Cores are picked and 

bounded to threads in a way that chosen cores are as close as 

possible.  

 

Hence, we eliminate unnecessary large inter-threads 

distances. 

Detecting hardware architecture and setting priorities at 

runtime start-up allow us to immediately schedule and bind 

Master thread to the best core and node. Hence, initialization 

phase of runtime and allocation of data environments take 

place on the node closest to all cores. In addition to hardware 

architecture detection and priority allocation, we added proper 

modifications to Nanos, allowing master and worker threads 

runtime related data to be allocated on nodes directly 

connected to cores on which these threads will be running. 

 

V. PERFORMANCE EVALUATION OF THREADS ALLOCATION 

MODEL 

To test our approach, we used benchmarks provided within 

Barcelona OpenMP Tasks Suite version 1.1.2 [21]. We ran the 

eleven benchmarks on the SunFire X4600 system [22] and we 

applied six tests for each one of them. For each test, we used 

one of the task scheduling strategies (Breadth-First, Cilk-

based or Work-First) provided within Nanos. In the first set of 

three tests, we used the original runtime implementation to 

observe effects of these scheduling policies on each 

benchmark. These tests are presented within figures of the 

following subsection as follows: 

 

 bf-Scheduler is the basic implementation of Nanos using 

Breadth-First scheduler; 

 Cilkbased-Scheduler is the basic implementation of Nanos 

using Cilk-based scheduler; 

 wf-Scheduler is the basic implementation of Nanos using 

Work-First scheduler. 

 

For the three remaining tests, we used the same schedulers but 

this time, we combined them to the thread priority allocation 

procedure and NUMA enhancements described in Section IV. 

These tests are presented as follows: 

 

 bf-Scheduler-NUMA is the implementation of Nanos using 

our NUMA aware modifications and using Breadth-First 

scheduler; 

 Cilkbased-Scheduler-NUMA is the implementation of 

Nanos using our NUMA aware modifications and using Cilk-

based scheduler; 

 wf-Scheduler-NUMA is the implementation of Nanos 

using our NUMA aware modifications and using Work-First 

scheduler. 

 

 

 

 

 

 

 

 

 

 

Let αi be the weight of each possible hop distance in the system, 

with αi > αi+1 

where i∈H and H=[min-numa-distance, . . . , max-numa-distance]. 

If i = max-numa-distance then αi+1 = 0. 

Let Ni be the number of cores at i hops from target core. 

Let Pij be the priority of core with index j where j ∈ {0, . . . , Ni-1} 

and located at i hops from target core. 

Value V2 is computed as follows:  𝑉2 =   𝛼𝑖 ∗ 𝑃𝑖𝑗𝑗𝑖  

Figure 3 New added priority value 

Let αi be the weight of each possible hop distance in the system, 

with αi>αi+1, 

where i ∈ H and H=[min-numa-distance, . . . , max-numa-distance]. 

If i = max-numa-distance then αi+1 = 0. 

Let Ni be the number of cores at i hops from target core. 

Value V1 is computed as follows: 𝑉1 =  𝛼𝑖 ∗ 𝑁𝑖𝑖  

 
Figure 2 Priority calculation 
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Figure 4 Threads priority allocation algorithm 

 

For each benchmark, we tested Medium or Large inputs 

sizes and for each test we took the best result obtained out of 

fifty runs. We should note that for some benchmarks no large 

inputs size are provided within the suite and therefore we 

limited the tests to Medium inputs. Following, we show the 

results obtained for some of the benchmarks. 

 

A. Benchmarks Results 

 In Figure 5, we show results obtained for Floorplan 

benchmark and its different speedups on NUMA architecture. 

For two and four active cores, all implementations showed 

almost similar and near linear speedups with minor progress 

for tests based on Cilk and work-first schedulers. For six or 

more threads, tests relying on the two work-stealing 

scheduling policies showed better performance than breadth-

first based tests. We obtained maximum speedup using the 

Cilk-based scheduler with NUMA aware implementation on 

sixteen cores. Adding NUMA aware extensions to Nanos 

brought respectively almost 3.18% and 3.14% improvement in 

performance over tests based on Cilk and work-first 

schedulers without our added changes. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5 Floorplan benchmark results 

SparseLU omp-for version showed results close to those 

obtained with the single version. Breadth-first scheduler shows 

the worst performance for more than four cores while work-

stealing based tests scale finely with increasing number of 

threads. We obtained maximum speedup when running the 

benchmark on sixteen cores with a combination of Cilk-based 

scheduler and our extensions. Work-first scheduler also leads 

to good scalability and obtains 13.97x speedup for sixteen 

cores (see Figure 6). Moreover, combining it with NUMA 

aware runtime, work-first scheduler yields to 5.24% faster 

execution time while with the Cilk-based scheduling policy it 

yields 7.01% improvement. 

 

Running FFT benchmark allows us to clearly identify the 

weakness of breadth-first scheduler for applications dealing 

with large amounts of data and tasks. In addition, it shows the 

importance of our implemented runtime modifications to 

obtain better performance. FFT is a benchmark that generates 

around 10M tasks for medium inputs set and 19M tasks for 

large inputs set. In addition, when using medium inputs, the 

benchmark’s memory utilization is around 6 GBytes while it 

grows up to 13 GBytes of memory for the large inputs set. 

When using breadth-first scheduling policy, a thread may pick 

any task from shared queue of tasks and hence, allows good 

load balancing. However, a new task selected from shared task 

pool may probably execute on data not been recently used by 

the same thread. Hence, data locality is not preserved and 

local caches are not efficiently exploited. 

 

 
Figure 6 SparseLU_for benchmark speedup 
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Cilk-based and work-first schedulers solve this issue and 

preserve data locality by applying depth-first scheduling 

mechanism. When parent task suspends itself and spawns a 

new one, it will share data with its child task. Since a copy of 

this shared data may still be hot in the core’s two level caches, 

number of cache misses may be significantly reduced. 

 

 
Figure 7 FFT benchmark results 

In Figure 7 we notice that breadth-first scheduler increases 

speedup of the benchmark to a maximum value of 4.43x when 

using up to six cores. Nevertheless, when running on more 

than six cores, we detect significant loss in performance with 

growing number of threads and speedup decreases to reach 

2.39x for sixteen cores. Our added NUMA extensions helped 

improving performance of this scheduler but high queue 

contentions, important cache misses and high latencies due to 

distant memory accesses prevent the benchmark from 

obtaining better speedup. 

Work-stealing based implementations, all showed poorer 

performance than breadth-first when running on two cores. 

However, they got almost similar execution times when four 

cores are used except for work-first scheduler combined with 

our Nanos extensions. This latter runs 8% faster than the 

combination with the breadth-first scheduler. 

When using six or more cores, both Cilk-based and work-

first scheduling based implementations obtained good 

speedups reaching respectively 8.61x and 9.3x for sixteen 

active cores. Combining these schedulers with our runtime 

modifications reduced noticeably execution time of FFT where 

Cilk-based scheduler brought 9.92x speedup to the 

benchmark. In addition, work-first offered 10.55% faster 

execution time than Cilk to reach 11.09x speedup. 

 

Like FFT, Strassen requires high memory utilization and 

consumes around 7 GBytes of memory. Therefore, exploiting 

data locality is important to benefit from hot caches, reduce 

distant memory accesses and hence, obtain better 

improvements in performance. 

We notice in Figure 8 that all schedulers showed good 

performance for different number of active cores. For this 

benchmark, work-first outperforms other two schedulers for 

all number of threads and obtains a maximum speed up of 

about 9.15x when running on sixteen cores.  

 

 

When NUMA adjustments are applied to Nanos, we can 

clearly see its efficiency in enhancing performance of the 

application for all used task schedulers. The best two speedups 

were obtained when sixteen threads were used, for both Cilk-

based and work-first scheduling policies combined with our 

modifications. Both respectively obtain 8.13x and 10.27x 

speedups. 

 

 
Figure 8 Strassen benchmark speedup 

Sort is another benchmark requiring high memory utilization 

reaching 8.5 GBytes with large input set, with a high number 

of generated tasks. Figure 9 shows the speedup of Sort 

benchmark using the different implementations. When two 

cores are active, work-first obtains the best speedup of 1.86x 

while Cilk-based scheduler runs 5% slower. 

 

 
Figure 9 Sort benchmark speedup 

 

For this benchmark, breadth-first shows the worst performance 

with increasing number of cores because data locality is not 

preserved and high task queue contentions emerge when using 

this scheduler. As for remaining implementations based on 

work-stealing scheduling policies, they both show good 

improvement in performance. On sixteen active cores, both 

Cilk-based and work-first schedulers obtain respectively 5.49x 

and 5.41x speedups. When our modifications are added to 

Nanos, we obtain respectively 9.17% and 10.06% faster 

execution time. 

 

For NQueens benchmark, almost all schedulers and 

implementations brought good speedups for different used 

threads count.  
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For two and four active cores, all implementations showed 

similar execution time with linear and super-linear speedups. 

However, we can see through Figure 10 that when four or 

more cores are running, NQueens gets its best performance 

with breadth-first scheduler. This is due to scheduler’s 

effectiveness in balancing the benchmark’s workload. NUMA 

extensions applied to Nanos improved performances of all 

schedulers. When using breadth-first scheduler alone, the 

benchmark showed linear and super-linear speedups for 

almost all number of threads and it obtained on sixteen cores, 

a maximum speedup of 15.93x over its serial execution time. 

When adding our NUMA extensions, the benchmark runs 

1.35% faster than the basic implementation for sixteen 

threads. 

 

 
Figure 10  NQueens benchmark speedup 

 

B. Benchmarks Results Analysis 

After analyzing results obtained in this section, we may 

clearly notice effectiveness of applying NUMA aware 

modifications to the runtime system in order to reduce 

execution time. We noticed an improvement in performance 

for almost all studied benchmarks. However, this progress in 

execution time and effects of our approach on speedup differ 

from a benchmark to another. 

We may see through results that our model influences data 

intensive benchmarks dealing with large amount of data and 

tasks like FFT, Strassen and Sort. This high efficiency is due 

to our technique assorted with first-touch NUMA policy. 

In modern operating systems (Microsoft Windows, Linux, 

etc.), a first-touch policy for memory allocation is used when 

running on NUMA architectures. This policy consists in 

suspending allocation of physical memory by the operating 

system to the instant where memory is first accessed through 

read or write. The operating system will try to allocate pages 

from local physical node of the CPU having a first read or 

write memory access to this allocated memory. When not 

enough free memory is available on that node, allocation falls 

back to closest nodes [23, 24]. 

With NUMA aware runtime, master thread runs on the node 

with highest priority. Hence, it allocates data on the best main 

and nearby nodes of the architecture (those located as close as 

possible to all existing cores and to each other). Using basic 

Nanos implementation, these data are allocated by the 

operating system on the first node of the architecture.  

 

This causes loss in performance for applications running on 

NUMA based architectures where several core to memory hop 

distances exist and where memory allocation on the first node 

is not ideal to obtain good speedups. Sunfire X4600 is an 

example of these computer architectures and we showed how 

our method may help improving performance of data and task 

intensive applications. 

 

VI. IMPLEMENTING NUMA AWARE TASK SCHEDULERS 

 

Task scheduling is an essential feature in runtime systems. 

OpenMP task-centric parallel programming model relies on 

different task scheduling strategies provided within Nanos. 

This is in order to efficiently schedule generated tasks on 

underlying parallel processing units, thus obtaining lower 

execution time. 

 

Today, scheduling strategies provided for OpenMP are not 

ideal for NUMA based systems. Therefore, applying basic 

scheduling strategies described earlier (breadth-first, Cilk 

based and work-first) may not be optimal for applications 

running on NUMA; especially those applications dealing with 

high number of tasks and data. 

For this purpose, in addition to threads-to-cores allocation 

technique we presented earlier, we discuss in the following, 

two NUMA aware task scheduling strategies we implemented 

in Nanos then we will study their effects on few benchmarks. 

 

A. DFWSPT Scheduler 

In order to take into consideration architectures with 

varying inter-core distances and memory access latencies, we 

developed DFWSPT; a depth first scheduler with NUMA 

aware work stealing. DFWSPT or Depth-First Work-Stealing 

Priority Threads scheduler is based on a depth-first strategy 

where each newly spawned task is executed immediately, 

while its parent is queued in the task pool of the thread on 

which is has been running. Task queuing takes place in front 

of the task pool. 

 

At startup, a specific list of threads will be affected for each 

thread of the team. This list, we call it priority list, contains 

identification numbers of other threads of the team. These 

threads are ranked in a priority based manner. Threads 

assigned to close cores have higher priority than those running 

on far cores. For example, let us consider that thread #0 is 

running on core #0, thread #1 on core #1 and thread #2 on 

core #2 with core #1 located at one hop from core #0 while 

core #2 is at two hops from core #0. 

According to thread #0, thread #1 will have higher priority 

than thread #2 and hence, it will be placed in the priority list 

before this latter. If several cores turned out to be at equal 

distance from target core, threads are placed according to their 

identification number. Threads with smaller id are placed first. 

When a thread is idle, it will first look in its own local queue 

for a task to execute.  
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If there are no tasks to execute, it will start looking for tasks in 

other queues. However, to do it in a NUMA aware manner, 

the thread will look into task pools of threads in a priority 

based order. It will sweep the priority list and checks the pool 

of tasks of each encountered thread until the end of priority 

threads array or until a task is picked for execution. Tasks are 

stolen from the back of the queue of tasks. A general 

explanation of DFWSPT is shown in Figure 12. 

 

 
Figure 11 DFWSPT tasks scheduler 

 

B. DFWSRPT Scheduler 

In a similar approach, we implemented this new scheduler 

within Nanos. Like previously introduced scheduler, 

DFWSRPT or Depth-First Work-Stealing Random Priority 

Threads scheduler requires newly created task to execute 

immediately, while its parent task is queued in the task pool 

(depth-first mechanism). In addition, a work-stealing 

mechanism is employed for workload balancing. Like 

DFWSPT, utilized work-stealing mechanism is NUMA aware 

and based on priority threads list. However, a victim thread is 

picked randomly to check its task pool for tasks to execute. 

 

This means that when a thread is idle, it will attempt to steal a 

task from its own task pool first. If empty, it will try to steal a 

task from another thread located as close as possible to it. 

When several threads are at equal distance from the idle 

thread, whether located on the same NUMA node or not, it 

will randomly choose its victim thread. Hence, it does not 

choose its victim thread according to its smaller identification 

number (see Figure 12). Randomizing thread’s selection 

mechanism may allow applications to avoid contentions that 

happen when several threads try to steal tasks from the closest 

thread holding the lowest thread id. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 12 DFWSRPT tasks scheduler 

C. Performance evaluation of task schedulers 

 

In order to analyze effects of our implemented task 

scheduling strategies, we studied the behavior of the 

benchmarks using these schedulers combined with priority 

threads allocation feature introduced in Section IV. We used 

for our tests the X4600 system and we conducted our tests on 

the different benchmarks. The majority of the benchmarks 

showed an improvement in performance. In this paper, FFT, 

Strassen and Sort benchmarks results are studied. We chose 

these three applications because they turned out to have the 

best improvements. This is due to the fact that they deal with 

large number of tasks and they require high amount of 

memory. Therefore, they require NUMA aware task 

schedulers to improve their performance. Following, we show 

the results of our schedulers. 

 

1) FFT 

In Figure 13 we show FFT speedup when using work-first 

scheduler combined to NUMA aware threads allocation and 

we compare it to its speedup using the two proposed task 

scheduling strategies, also combined to the previously 

introduced threads allocation technique. 

 

 
Figure 13 FFT Speedup with NUMA aware task schedulers 

 

Results show that DFWSPT improved performance of FFT 

and allowed the benchmark to reach a speedup of 11.78x on 

sixteen threads.  
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Hence, when using DFWSPT, FFT runs 5.85% faster than its 

execution time using work-first for sixteen active cores. 

DFWSRPT scheduler showed execution performance almost 

similar to DFWSPT. Both introduced schedulers improved 

FFT performance, mainly because they reduce the number of 

costly remote memory accesses whether these accesses aim to 

steal tasks or to read from and write to a memory location 

during application computation. 

 

2) Sort 

Same as FFT, both NUMA aware task schedulers brought 

almost similar performance improvements to Sort benchmark 

(see Figure 14). NUMA aware threads allocation model, 

combined to work-first scheduler, overcomes the other two 

schedulers for two and four active cores. But for six and eight 

cores, both DFWSPT and DFWSRPT enhanced performance 

of Sort and offered slightly better speedup than work-first 

based model. In addition, for more active cores, both 

introduced schedulers gained over the basic scheduler where 

DFWSPT obtained 6.32x speedup for sixteen cores to execute 

the benchmark 4.76% faster than with work-first. 

 

 
Figure 14 Sort speedup with NUMA aware task schedulers 

 

3) Strassen 

Like both FFT and Sort, Strassen makes good use of 

NUMA aware schedulers on X4600 to reduce its execution 

time. When four or more cores are active, both DFWSPT and 

DFWSRPT show better performance than work-first scheduler 

since remote memory accesses are significantly reduced. For 

Strassen, random based NUMA aware task scheduler brought 

better performance than DFWSPT mostly since the benchmark 

produces high number of task stealing between threads. For 

sixteen active cores, DFWSRPT can obtain a speedup of 

almost 12.38x over serial execution time, thus obtaining 

17.03% faster execution time than with work-first based 

scheduler (see Figure 15). 

 

 

 

 

 

 

 

 

 

 

 
Figure 15 Strassen speedup with NUMA aware task schedulers 

VII. CONCLUSION & FUTURE WORKS 

In this paper, we presented threads and tasks management 

models allowing Nanos runtime system to provide better 

efficiency for OpenMP parallel applications running on 

NUMA based architectures. In a first approach, we added a 

portable and adaptable model that generates a priority value 

for each core of the architecture depending on the number of 

close cores. Moreover, we made modifications to the runtime 

in order to allocate each thread’s runtime system related data 

to the thread’s attached memory. In addition, we introduced to 

Nanos two NUMA aware task scheduling strategies taking 

into consideration positions of cores when stealing tasks. 

These add-ons proved good efficiency when running BOTS 

benchmarks on a sixteen core NUMA machine, especially for 

data and task intensive benchmarks. Moreover, applying this 

NUMA aware approach within the redundancy technique 

helped significantly improve performance of these 

benchmarks. 

 

This work and results encourage us to analyze the 

performance of applications using our models on other 

hardware architectures. Moreover, since power consumption is 

an important aspect in large scale and embedded computing, 

building power efficient task scheduling strategies may also be 

considered as good candidate subject for future works. 
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