
 International Journal of advanced studies in Computer Science and Engineering

IJASCSE Volume 3, Issue 6, 2014

www.ijascse.org Page 23

June 30

Performance Analysis of OpenMP and MPI for NW algorithm on

multicore architecture

SHRIMANKAR. D. D, SATHE. S. R.

Department of Computer Science Engineering

Visvesvaraya National Institute of Technology

South Ambazari Road Nagpur, India

Abstract: - Multicore Architectures now-

a-days consist of cluster of SMP nodes. OpenMP

and MPI programming paradigms can be used

for parallelization of codes for such

architectures. OpenMP uses shared memory, and

hence is viewed as a simpler programming

paradigm than MPI which is primarily a

distributed memory paradigm. However, the

OpenMP applications may not scale beyond one

SMP node. On the other hand, if we use pure

MPI we can scale using more SMP nodes, but it

might introduce overhead in inter-node

communication. In this paper, we analyse the

performance of OpenMP and MPI paradigms for

the same application. In particular, we look at a

basic Needleman-Wunsch sequence alignment

algorithm and parallelize it using variable size

sequences and tile sizes on multicore

architecture. We demonstrate that the overhead

from communications in OpenMP loops on an

SMP node is significant and increases with the

number of cores participating in execution of the

loop compared to equivalent MPI

implementations. In some cases MPI

implementation gives better performance than

the OpenMP implementation, but in other cases

OpenMP implementation performs better than

the MPI counterpart and requires less

programming effort as well. To analyse this

result, we also present a simple method on how to

estimate the overhead of communication in

OpenMP loops. Our results are both surprising

and of great interest to a different variety of

input sequence size, file size, number of threads

and processes.

Key-Words: - Parallel, OpenMP, MPI, Sequence

Alignment, Multicore

I Introduction

Programming for parallel computing has

been dominated by the MPI and OpenMP

programming paradigms. Both of the paradigms aim

to provide an interface for high performance, but

their approach is somewhat different. OpenMP is

designed for share memory systems, and has

recently gained popularity because of its simple

interface. With little effort, loops can easily be

parallelized, and much of the synchronization and

data sharing is hidden from the user. MPI is

designed for distributed memory and is probably the

best known paradigm in parallel computing.

Communication between processes is done

explicitly, and a relatively large set of functions in

the API opens up for high performance and

tweaking which is not available in OpenMP. Even

though it is designed for distributed memory

systems, it runs just as good on shared memory

systems.

This work searches for the best

configuration of OpenMP and MPI for optimal

performance. We run a parallel biological

application on a modern multicore architecture to

measure the effects of the parallel code. After

analysing the performance of different

configurations from a hardware point of view, we

proposed a general model for estimating overhead in

OpenMP loops.

On the other hand, the sizes of the sequence

files in biological data are so huge that sequence

alignment using a sequential algorithm is out of

question. Also generic sequence searching becomes

one of the most heavily used operations in

computational biology [1, 2, 3]. In particular, the

size of GenBank/ EMBL/DDBJ doubles every 15

months [4]. Therefore analysing generic databases

with such a constant growth, raises a challenge for

 International Journal of advanced studies in Computer Science and Engineering

IJASCSE Volume 3, Issue 6, 2014

www.ijascse.org Page 24

June 30

scientist, in respect of being time consuming,

expensive and impractical[5]. Needleman-

Wunsch[7] is one the most significant and widely-

used similarity algorithms for biological sequence

comparison that adopts the dynamic programming

method [1]. despite its high sensitivity in identifying

best global alignments, it is very time consuming

and computationally expensive process. This

algorithm requires quadratic time for each

comparison of two sequences[6]. Therefore, because

of the complexity of this algorithm, there is a need

for a methodology that could reduce the

computation time while delivering accurate results.

In this study, two programming paradigms are being

compared for the parallelization of Needleman-

Wunsch algorithm on a cluster of SMP nodes.

Specifically, an evaluation between different type of

implementation paradigm such as pure OpenMP and

pure MPI is provided in terms of execution time and

speedup.

The remainder of this paper is organized as

follows. In the next section the multicore

architecture and Performance Modelling is

presented. In section 3 the original NW algorithm is

described in detailed while in section 4 our method

of parallelization and methodology is described and

discussed. Section 5 explains the experimental

results and comparisons and finally the last section

will conclude the paper.

II Multicore Architecture and

Performance Modelling

Multicore Architecture comes in many

forms and are in this work roughly divided into two

groups: distributed memory systems and shared

memory systems. The respective groups are

described and illustrated with simplified figures in

this section (Fig. 1 and 2).

2.1 OpenMP

Shared memory architectures open up for

efficient use of threads and shared memory

programming models. The traditional way to take

advantage of such architectures is to use threads in

some way or other. POSIX threads (pthreads) are

mostly used in HPC programming; however thread

models can quickly generate complex and

unreadable code. Recent advances in processor

architectures with several cores on the same chip

have made shared memory programming models

more interesting. Especially the introduction of

dual-core processors for desktops and multicore for

workstation and servers, the last decade has made

this area of research interesting for other groups

than the HPC communities.

OpenMP[14] is an API that supports an

easy-to-use shared memory programming model.

The easiness of inserting OpenMP directives into

the parallel code has made this model popular

compared to pthreads. This model leaves most of

the work of thread handling to the compiler and

greatly reduces the complexity of the code. The

directives for parallelization in OpenMP allows the

user to decide what variables should be shared and

which of them should be private in an easy way, in

addition to what parts of the code that should be

parallelized. The simplicity of using OpenMP

directives has made it a popular way of parallelizing

applications.

Shared memory systems (Fig.1) are systems

with more than one processor where all the

processor share memory. These systems are well

suited for OpenMP, MPI, or mixed OpenMP-MPI

programming models. Each processor sees the

memory as one large memory.

Fig.1. A Shared Memory System

2.2 The Message Passing Interface – MPI

MPI[8] [9] is an industry standard for message

passing communication for applications running on

both shared and distributed memory systems. MPI

allows the programmer to manage communication

between processes on distributed memory systems.

The MPI is an interface standard for what an MPI-

implementation should provide such as functions

 International Journal of advanced studies in Computer Science and Engineering

IJASCSE Volume 3, Issue 6, 2014

www.ijascse.org Page 25

June 30

and what these functions should do. There are

several implementations of MPI and the best known

are probably MPICH and OpenMPI, both open

source version implementations. Most vendors of

HPC resources also have their own proprietary

implementation of MPI with bindings for C, C++

and Fortran. SCALI [10] is probably the best known

Norwegian vendor of MPI implementations. The

first MPI standard was presented at Supercomputing

1994 and finalized soon thereafter. The first

standard included a language independent

specification in addition to specifications for ANSI-

C and Fortran-77.About 128 functions are included

in the MPI 1.2 specification. This interface provides

functions for the programmer to distribute data,

synchronize processes and create virtual topologies

for communication between processes.

Distributed memory systems (Fig.2) share

interconnection but have private processor and

memory. These systems are well suited for message-

passing libraries like MPI.

Fig.3. Alignment of two sequences with score = 4.

III. The Original Needleman-

Wunsch algorithm

In order to implement this algorithm either

the task or the data can be divided between

processors. Task decomposition is about breaking

down the job in different parts and assign each part

of job to a specific processor while in data

decomposition, all processors apply the same job on

different portion of data. As a matter of fact, in most

cases the nature of algorithm and study would

determine which type of decomposition has to take

place.

Fig.2. A Distributed Memory System

For this algorithm, data decomposition

parallel approach is utilized in both OpenMP and

MPI implementation. Here the data is divided

according to size of the tile specified.

3.1 NW Algorithm for sequence alignment

The algorithm consists of two parts: the

calculation of the total score indicating the

similarity between the two given sequences, and the

identification of the alignments that lead to the

score. In this work we have concentrated on the

calculation of the score, since this is the most

computationally expensive part. The algorithm finds

alignments by comparing entire sequences. The

sequences are placed along the left margin (X) and

on the top (Y). The matrix as shown in Figure 3 is

initialized with decreasing values (0, -1, -2, -3 ……)

 International Journal of advanced studies in Computer Science and Engineering

IJASCSE Volume 3, Issue 6, 2014

www.ijascse.org Page 26

June 30

along the first row and first column to penalize for

consecutive gaps.

The other elements of the matrix are

calculated by finding the maximum value among the

following three values:

([, 1]) ,

([,]) ([1, 1]) , (1)

([1,])

sim s i j gp

sim s i j sim s i j ss

sim s i j gp

 


    
  

Here, gp is -1, and ss is 1 if the elements

match and 0 otherwise. However, other general

values can be used instead. Following this

recurrence equation, the matrix is filled from top left

to bottom right with entry  ,i j requiring the

entries , 1i j  ,  1, 1i j  and  1,i j . Notice

that  ,SM i j corresponds to the best score of the

subsequences 1 2, ,........, ix x x and 1 2, ,........, jy y y .

Since global alignment takes into account the entire

sequences, the final score will always be found in

the bottom right hand corner of the matrix. In our

example, the final score 4 gives us measures of how

similar the two sequences are.

Parallel sequence alignment programs based

on two different approaches OpenMP and MPI are

developed in our research to compare the

performance of both the models on our underlined

architecture (section 4.1 and 4.2). The two programs

differ on how the memory architecture is used

during implementation. Both programs are written

using C language.

IV. Approach and parallelization

methodology

4.1 OpenMP Implementation for sequence

alignment

In the shared memory implementation,

based on the size of the tile (explained in section

4.2) provided as a parameter by the programmer, the

original long sequence is divided into subsequences.

One of these subsequences is kept by the main core

and the rest of the subsequences are sent to  1n

cores to execute in parallel. Here number of

working cores corresponds to the number of threads

which is given as parameter. All these working

cores (including main core) will execute in parallel.

Each core operate on different set of data for

construction of similarity matrix of Figure 3 [11].

After doing the subsequence alignment, all of these

 1n cores will send the alignment results to the

main core. The main core will combine the

subsequence alignment, sent by  1n cores, to

compute the final alignment score.

Our code has been tested on a twelve core

workstation with 2.66GHz processor with 8 GB

cache system. The architecture we used for our

shared memory implementation is as shown in Fig

1. On this architecture OpenMP model Fig. 4

generates threads for parallel execution of the code.

The Fig 4 shows that, out of the n threads (n given

as parameter), one master thread generates the

 1n slave threads and each slave thread will run

on each core simultaneously. Once the execution

has finishes the result was given back to the master.

The thread then sets its flag to inform master to

issue next data for execution. Each thread executes

data from each tile.

4.2 MPI Implementation for sequence

alignment

For very long sequences, the sequence will

be first cut into several sets of subsequences, and

each of these subsequences will be aligned by each

MPI processes executing on each cores parallely

[12].

Here number of working cores corresponds

to number of processes. For the cases when

sequences are extremely long and cannot be aligned

even with OpenMP due to limitation of memory,

they are divided into several shorter pieces

according to tile size. The number of iterations

(number of tiles) is

(2)
Sequence Size

Tile Size


 International Journal of advanced studies in Computer Science and Engineering

IJASCSE Volume 3, Issue 6, 2014

www.ijascse.org Page 27

June 30

Fig.4. OpenMP – Programming Model

Our input is a matrix with two sequences,

one along x axis and other along y axis. The tile size

which is also two dimensional (along x and y

axis), divides the similarity matrix of Fig. 3.

Therefore total number of tiled iterations which we

call here as tileXCount and tileYCount will be

calculated according to equation 2.

For example, if sequence size is 1 MB and

tile size is 16384x16384 B then the number of

iterations tileXCount (sequence along x axis)

becomes
1048576

64
16384

 . So 64M  . (M of Fig.

6) Similar calculation will go for tileYCount

(sequence along y axis) depending upon the

sequence size and tile size along y axis. That will

be the value of N of Fig.6.

The general MPI Model is shown in Fig. 5.

In our architecture we have such twelve cores per

node.

Fig. 5. MPI – Programming Model

As shown in Figure 6 the computation goes

in wavefront manner, i.e once the first row and first

column, i.e tile(0,0) has been filled with all the

computed entries, calculated according to equation

1, the next tile to be calculated is south-east. Its

value is dependent upon its immediate left column,

top row and top-left element. For long sequence

files, the size of the matrix also grows very large

and after some point it could not get fit into

memory. Hence to handle such long size files, we

have used chunks of data (tiled data) for

computation as show in the Fig. 6.

Here N
T

 
 

 = tileYCount and M
T

 
 

 =

tileXCount are the number of tiles column-wise and

row-wise respectively. Where N and M are the

sequence size along y axis and x axis respectively

and T is the tile size in bytes. When the execution

starts, first tile (0,0) will get executed.

Fig.6. Execution of tiles in wavefront manner

The value will get stored in right column

and bottom row of the corresponding tile. In the

next run tiles  0,1 and  1,0 will be executed

parallel. They will also store their respective

computed values in right column and bottom row.

Then in the next step, tiles  0,2 ,  1,1 and  2,0

will get executed simultaneously. Thus the number

of steps for execution of tiled iteration will be

1M N  , which is the number of diagonals as

shown by the dotted lines in the Fig. 6. For example,

for a matrix of size 4x4, number of actual steps

 International Journal of advanced studies in Computer Science and Engineering

IJASCSE Volume 3, Issue 6, 2014

www.ijascse.org Page 28

June 30

(diagonal rows) to be calculated in tiled iteration

space would be (4+4-1=7).

The two different parallel implementations

differ on how the memory architecture is used

during implementation. One program is called the

thread based shared memory, in which computation

is started for the full length sequences at the

beginning, and after the sequences are cut into sub-

sequences, all the sub alignments will follow the

single, uniform sequence. The MPI implementation

is based on distributed memory architecture, in

which sequences will be cut first and each of the

sub-sequences will build their own computation for

their individual alignments. Both programs are

written using C++ language.

V. Results

The experiments described in the paper

were carried out on two Linux based workstation of

Intel Xeon 5650 processor with 2.66GHz clock

speed of 12 cores each. We have done the analysis

on execution time and speedup with varying number

of threads and chunk sizes for OpenMP. We have

also done the analysis on execution time and

speedup with varying number of processes and tile

size for MPI as parameters. The corresponding

execution time and speedup are reported in Fig. 7

and Fig. 8. The results were obtained for

configuration such that for OpenMP implementation

the number of threads generated will correspond to

number of working cores and for MPI

implementation number of processes corresponds to

number of working cores.

The major advantage of MPI programming

is program speedup in terms of time, because each

process processes a different piece of the same job

simultaneously and independently. However, this is

obviously the case for the MPI program, but not

quite true for the shared memory system, which

does not gain any speed improvement after some

point. The reason is that in shared memory

implementation based on fork and join model, no

matter how many processors are used, every time a

single (master) thread for the full length sequences

is built at the beginning for the processors sub-

alignments, and it appears to be the most time-

consuming part of all alignment procedures.

For testing the implementation over various

length Sequences, four sample input files are chosen

from a publicly available GenBank database [13]

which have benchmark alignments. The first file

consists of 512 KB character long, the second file

consists of 1MB character long, the third file

consists of 2 MB characters long and fourth is 4MB

characters long. Table 1 and 2 depicted our analysis

of both paradigms; its corresponding graphical

representation is shown in Fig. 7, 8 and Fig. 10, 11.

It shows that, for MPI implementation we obtained

a very good speedup for large sequences compared

to OpenMP implementation. We also obtained

sufficiently satisfactory speed up for small and

medium sequences. The results of the simulations

are shown in the following figures:

(a) For Tile Size 8192x8192

(b) For Tile Size 16384x16384

Fig. 7. Time analysis for OpenMP implementation

on input files of various size.

 International Journal of advanced studies in Computer Science and Engineering

IJASCSE Volume 3, Issue 6, 2014

www.ijascse.org Page 29

June 30

(a) For Tile Size 8192x8192

(c) For Tile Size 16384x16384

Fig.8. Speedup analysis for OpenMP

implementation on input files of various size.

From table 1, for both tile sizes, it is

observed from the highlighted entries that as the

sequence size increases the optimum performance

obtained with respect to time and speedup improves

with the decreasing number of threads (working

cores). For example, as shown in table 1, for

sequence size 512KB for both tile sizes the optimum

performance obtained on 12 threads. For sequence

size 1MB, the optimum performance is on 10

threads. Similarly for sequence size 2MB and 4MB

the optimum performance is on 8 and 6 threads

respectively. This can also observed from the curves

of OpenMP graphs of Fig.7 and 8 for time and

speedup respectively.

This is probably because of the following

reason. The total number of processors is two with

each containing six cores. The layout is illustrated in

Fig. 9, reproduced and simplified from [13]. When

running tests with both tile sizes on, for example, 4

cores, we must use a minimum of

8192 8192
128

4()

x xsizeofBytes
Mb

cores
 of data for

each core, when 8192x8192 tile size is used

and

16384 16384
512

4()

x xsizeofBytes
MB

cores
 of data for

each core, when 16384x16384 tile size is used.

How the data is exactly located on each core

is not known, but assume that the tile size matrix is

located as depicted in Fig. 9, where the shaded

memory block contains the data from the master

working core. Now, when the algorithm uses 12

OpenMP threads, all the cores will access the

memory block in all iterations of the solver. For the

cores to retrieve this memory, the cores farthest

away from the data might have to idle several cycles

to get the data to be processed. This will happen

even if the data is not distributed as in Fig 6,

because of the nature of OpenMP.

Fig.9. Data resides in the shaded memory block,

longest away from CPU11 and CPU12.

 International Journal of advanced studies in Computer Science and Engineering

IJASCSE Volume 3, Issue 6, 2014

www.ijascse.org Page 30

June 30

The total overhead, Ot, for an OpenMP loop on

processors executed by a number of threads can be

expressed as

t comm threadsO T T  ------------ (3)

Where Tcomm is the time required for communication

and Tthreads is the overhead from spawning,

destroying and switching between active threads.

For a for-loop in OpenMP, a loop of i
th
 iterations is

divided into chunk size of k, so that the number of

messages sent is

i

k
---------------- (4)

and the size, m of the messages are

m = k *sizeof(datatype)-------------(5)

The cost of communication of k bytes is known

to be

Tcomm= Tm+ βm --------------(6)

Where Tm is the latency of the respective cache level

or memory where the data is located and β is the

bandwidth between the processors. Summarizing

these formulas, we get a general expression for

overhead of communication in an OpenMP for-loop,

(* * ())comm m

i
T T k sizeof datatype

k
  ------(7)

There are three variables in this equation we

should look into to provide a better understanding of

the estimate, the bandwidth β, cache-latency Tm and

chunk size k.

- The bandwidth could well be related to how

many processors share the communication bus,

so this variable could be decreasing as the

number of processors increases.

- Tm can be found with the same method as β, only

with NULL-size messages. Depending on how

many processors that participate in the

computation, the length of the data bus and how

many processors using the data bus at the same

time will influence the latency. As more cores

participate in the for loop, it is likely that we end

up with a decreasing average latency.

- The tile size k can be specified statically with the

OpenMP keyword schedule (static, tile size).

This is however not recommended, since a

normal programmer seldom knows the optimal

tile size. By not specifying the tile size, it is set to

be decided in runtime and therefore difficult to

know. Finding the optimal tile size can be done

empirically by comparing different tile sizes to

the default schedule (runtime).

Further the speedup graphs indicate that we get

little speedup in our NW algorithm with this

strategy. This could be because of border value

exchanges between tiles during the calculation, or

that the latency, Tm, is less significant than the

bandwidth, β, in Equation 7.

If a thread migrates to another CPU for some

reason, this migration takes extra time and must be

included in the overhead calculation. To test if this

was a significant source of overhead, we used the

bindprocess() function-call to bind the OpenMP

threads to a given CPU. However, this did not give

any notable performance improvements. Since the

bindprocess() function did not give any
improvement, it might be that threads already are

bound to a CPU in IBM’s OpenMP-implementation,

or that threads did not migrate before we used the

bindprocess() call.

In case of pure MPI, the program is designed to

have multiple instances of itself running in parallel

on different processors. Each process has its own

local memory and communicates with other

instances by sending messages to them. To be able

to distinguish between those processes, a unique id

is assigned to each of them. Such message passing

implementation is more difficult to program than

multithreaded programs as all the communication

between nodes has to be done explicitly.

A lot of care has to be taken to maximize the

communication throughput by grouping

communication tasks where it is possible. The

overhead created by message passing can be

outweighed by the advantage of explicitly

expressing locality of a process. Making the

communication between processes explicit also

reduces problems with false sharing.

 International Journal of advanced studies in Computer Science and Engineering

IJASCSE Volume 3, Issue 6, 2014

www.ijascse.org Page 31

June 30

In our MPI implementation, the complete data

which is to be computed is distributed to the node

where the cores will execute it in parallel. These

data is located in a memory bank close to the core

on each node. So the idle time when waiting for

memory is avoided because of the close proximity

to the memory[13]. With larger sequence size, the

MPI processes achieve greater performance because

all of the data resides in the level 3 cache which can

also be inferred from figure 7.

With several cores sharing data on each node, a

significant source of communication overhead

between the cores is reduced. Hence with pure MPI

model, for large size file, this technique gives

improved performance. Because if the sequence size

is small the overall time required to distribute data

to all nodes will be comparatively more than the

time required for this distribution for large sized

data.

As discussed above, our results also show

the same observation for MPI model. Table 2 shows

from the highlighted entries that as the sequence

size increases the optimum performance obtained

with the increasing number of processes and tile

size. For example, when sequence size is 512KB the

optimum performance obtained on 12 processes. For

sequence size 1MB the optimum performance was

on 16 processes. Similarly for sequence size 2MB

and 4MB the optimum performance is on 20 and 24

processes respectively. This can also observed from

the curves of MPI graphs of Fig.10 and 11 for time

and speedup respectively.

This is because for big tile size, more data has

been send to the slave process and hence

communication between the processes gets reduced,

which would be otherwise more for smaller tile size.

Similarly as number of processes increases more

data gets computed simultaneously. Hence for

bigger file size MPI gives improved performance.

(a) for tile Size (8192x8192)

(b) for tile Size (16384x16384)

Fig.10. Time analysis for MPI implementation on

various sequence size input files

(a) for tile Size (8192x8192)

 International Journal of advanced studies in Computer Science and Engineering

IJASCSE Volume 3, Issue 6, 2014

www.ijascse.org Page 32

June 30

(b) for tile Size (16384x16384)

Figure 11. Speedup analysis for MPI

implementation on various sequence size input files

VI. Conclusion

 In this paper we have

1. Parallelized and optimized an existing

Needleman-Wunsch algorithm with OpenMP

and MPI and studied the performance with

respect to time and speedup for large sequence

size using appropriate tile size.

2. Did a study of OpenMP and MPI on NW

algorithm and conclude that depending upon

sequence size, tile sizes and number of threads

and processes as parameters on our architecture,

in some cases OpenMP shows better

performance while in all the other cases MPI

provides the optimum performance.
3. Proposed a general model for estimating

overhead in for-loops in OpenMP.

To parallelize the Needleman-Wunsch

algorithm codes we have used both OpenMP and

MPI to explore the possibilities of maximum

performance. MPI was used globally to exchange

border-values and particles while OpenMP was used

to parallelize compute-intensive for-loops. While

OpenMP is the easiest way to parallelize loops, our

results showed that overhead from communication
between the processors makes it a low-performing

API compared to MPI where data is communicated

explicitly. We suggested a general expression to
model the overhead of communication in OpenMP

loops based on number of loop-iterations, chunk

size, latency and bandwidth. We also improved the

way memory was allocated and freed dynamically

during parallel execution in order to handle large

size sequence file and tried to improve the

scalability of the parallel code. Our results show that

we have achieved speedup of 8.06 on 512KB

sequence size with 12 threads for OpenMP and 4.16

on 2MB sequence size with 20 processes for MPI

implementation.

References:

[1] Hsien-Yu, L., Meng-Lai, Y., & Yi, C. (2004). A

parallel implementation of the Smith-

Waterman algorithm for massive sequences

searching. Engineering in Medicine and

Biology Society, 2004. IEMBS apos;04. 26th

Annual International Conference of the IEEE,

(pp. 2817-2820). San Francisco, CA, USA.

[2] Murakami, M. M., Maria, E., Walter, M. T., &

Martins, W. S. (2003). Parallel Implementation

of the Smith-Waterman Algorithm for Large

Scale Database Search.The 1
st
 International

Conference on Bioinformatics and

Computational Biology - ICoBiCoBi,

2003.RibeirãoPreto.

[3] Gotoh, O. (1982). An improved algorithm for

matching biological sequences.Journal of

Molecular Biology , 162, 705-708.

[4] Benson, D. A., Karsch-Mizrachi, I., Lipman, D.

J., Ostell, J., & Wheeler, D. L. (2008).

GenBank.Nucleic Acids Research , 25-30.

[5] Meng, X., &Chaudhary, V. (2005). Exploiting

Multi-level Parallelism for Homology Search

using General Purpose Processors.Proceedings

of the 11th International Conference on

Parallel and Distributed Systems - Workshops

(ICPADS'05) -Volume 02 (pp. 331-335).

Washington, DC, USA: IEEE Computer

Society.

 [6] Sanchez, F., Salami, E., Ramirez, A., & Valero,

M. (2005). Parallel processing in biological

sequence comparison using general purpose

processors.Workload Characterization

Symposium, 2005. Proceedings of the IEEE

International, (pp. 99-108).

[7] Saul B. Needleman and Christian D. Wunsch.“A

general method applicable to the search for

similarities in the amino acid sequence of two

sequences,” Journal of Molecular Biology, pp.

443-453, 1970

 International Journal of advanced studies in Computer Science and Engineering

IJASCSE Volume 3, Issue 6, 2014

www.ijascse.org Page 33

June 30

[8] The Message Passing Interface (MPI) Standard -

http://wwwunix. mcs.anl.gov/mpi/ and

http://www.mpi-forum.org

[9] Anne C. Elster and David L. Presberg, “Setting

Standards For Parallel Computing: The High

Performance Fortran and Message Passing

Interface Efforts ”, May 1993, Theory Center

SMART NODE Newsletter, Vol. 5, No.3 .

http://www.idi.ntnu.no/ elster

[10] SCALI higher performance computing,

http://www.scali.com/
[11] Viktor K. Decyk and Charles D. Norton, “UCLA

Parallel PIC Framework,”, January 2006, University

of Los Angeles, USA.

[12] Ted Retzlaff and John G. Shaw , “Simulation

of Multi-component Charged Particle Systems”,

2002, Wilson Center for Research and

Techology , Xerox Corporation, USA.

[13] GenBank, http://www.ncbi.nlm.nih.gov

[14] Alejandro Duran, Marc Gonzàles, and

JulitaCorbalán.Automatic Thread

Distributionfor Nested Parallelism inOpenMP.

In 19th ACM International Conference

onSupercomputing, pages 121–130, Cambridge,

MA, USA, June 2005.

Table 1. Performance Evaluation of OpenMP on both tile sizes.

Sequence Size: 512KB Sequence Size: 1 MB Sequence Size: 2MB Sequence Size: 4MB

Tile
Size

8192x8192 16384x16384 8192x8192 16384x16384 8192x8192 16384x16384 8192x8192 16384x16384

Threa

ds

Time

(sec)

Spee

d up

Time

(sec)

Spee

d up

Time

(sec)

Spee

d up

Time

(sec)

Spee

d up

Time

(sec)

Spee

d up

Time

(sec)

Spee

d up

Time

(sec)

Spee

d up

Time

(sec)

Spee

d up

1 3498 3498 8573 8573 14,834 14,834 22,583 22,583

2 3056 1.14 2875 1.22 7321 1.17 6385 1.34 12,765 1.16 12,643 1.17 16,538 1.37 18,638 1.21

4 2754 1.27 2095 1.67 6739 1.27 4823 1.78 10,384 1.43 9346 1.59 14,574 1.55 15,735 1.44

6 2473 1.41 1584 2.21 6194 1.38 2847 3.01 8376 1.77 6934 2.14 12,654 1.78 10,749 2.10

8 2176 1.61 1080 3.24 4945 1.73 1947 4.40 6754 2.20 3727 3.98 13,354 1.69 14,745 1.53

10 1963 1.78 798 4.38 3856 2.22 1265 6.78 7394 2.01 4226 3.51 14,959 1.51 15,746 1.43

12 1642 2.13 434 8.06 4356 1.97 1343 6.38 8394 1.77 4915 3.02 15,637 1.44 16,984 1.33

http://wwwunix/
http://www.scali.com/
http://www.ncbi.nlm.nih.gov/

 International Journal of advanced studies in Computer Science and Engineering

IJASCSE Volume 3, Issue 6, 2014

www.ijascse.org Page 34

June 30

Table 2. Performance Evaluation of MPI on both tile sizes.

 Sequence Size: 512KB Sequence Size: 1 MB Sequence Size: 2MB Sequence Size: 4MB

Tile

Size
8192x8192 16384x16384 8192x8192 16384x16384 8192x8192 16384x16384 8192x8192 16384x16384

Proces

ses

Time

(sec)

Spee

d up

Time

(sec)

Spee

dup

Time

(sec)

Spee

d up

Time

(sec)

Spee

dup

Time

(sec)

Spee

d up

Time

(sec)

Spee

dup

Time

(sec)

Spee

d up

Time

(sec)

Speed

up

1 3498 3498 8573 8573 14,834 14,834 22,583 22,583

4 3087 1.13 2754 1.27 7148 1.20 6548 1.31 10,463 1.42 11,568 1 18,623 1.21 14,658 1.54

8 2638 1.33 2254 1.55 6983 1.23 4587 1.87 8835 1.68 9735 1.52 16,563 1.36 12,745 1.77

12 2246 1.56 1514 2.31 5598 1.53 3547 2.42 7723 1.92 7456 1.99 14,749 1.53 11,789 1.92

16 2429 1.44 2389 1.46 3224 2.66 2845 3.01 4873 3.04 6587 2.25 12723 1.77 9576 2.36

20 2598 1.35 2647 1.32 3387 2.53 3125 2.74 3565 4.16 5426 2.73 10873 2.08 8423 2.68

24 2798 1.25 2748 1.27 4523 1.90 3268 2.62 6761 2.19 6014 2.47 8564 2.64 7124 3.17

