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Abstract: - Multicore Architectures now-

a-days consist of cluster of SMP nodes. OpenMP 

and MPI programming paradigms can be used 

for parallelization of codes for such 

architectures. OpenMP uses shared memory, and 

hence is viewed as a simpler programming 

paradigm than MPI which is primarily a 

distributed memory paradigm. However, the 

OpenMP applications may not scale beyond one 

SMP node. On the other hand, if we use pure 

MPI we can scale using more SMP nodes, but it 

might introduce overhead in inter-node 

communication. In this paper, we analyse the 

performance of OpenMP and MPI paradigms for 

the same application. In particular, we look at a 

basic Needleman-Wunsch sequence alignment 

algorithm and parallelize it using variable size 

sequences and tile sizes on multicore 

architecture. We demonstrate that the overhead 

from communications in OpenMP loops on an 

SMP node is significant and increases with the 

number of cores participating in execution of the 

loop compared to equivalent MPI 

implementations. In some cases MPI 

implementation gives better performance than 

the OpenMP implementation, but in other cases 

OpenMP implementation performs better than 

the MPI counterpart and requires less 

programming effort as well. To analyse this 

result, we also present a simple method on how to 

estimate the overhead of communication in 

OpenMP loops. Our results are both surprising 

and of great interest to a different variety of 

input sequence size, file size, number of threads 

and processes. 
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I Introduction 

Programming for parallel computing has 

been dominated by the MPI and OpenMP 

programming paradigms. Both of the paradigms aim 

to provide an interface for high performance, but 

their approach is somewhat different. OpenMP is 

designed for share memory systems, and has 

recently gained popularity because of its simple 

interface. With little effort, loops can easily be 

parallelized, and much of the synchronization and 

data sharing is hidden from the user. MPI is 

designed for distributed memory and is probably the 

best known paradigm in parallel computing. 

Communication between processes is done 

explicitly, and a relatively large set of functions in 

the API opens up for high performance and 

tweaking which is not available in OpenMP. Even 

though it is designed for distributed memory 

systems, it runs just as good on shared memory 

systems. 

This work searches for the best 

configuration of OpenMP and MPI for optimal 

performance. We run a parallel biological 

application on a modern multicore architecture to 

measure the effects of the parallel code. After 

analysing the performance of different 

configurations from a hardware point of view, we 

proposed a general model for estimating overhead in 

OpenMP loops. 

On the other hand, the sizes of the sequence 

files in biological data are so huge that sequence 

alignment using a sequential algorithm is out of 

question.  Also generic sequence searching becomes 

one of the most heavily used operations in 

computational biology [1, 2, 3]. In particular, the 

size of GenBank/ EMBL/DDBJ doubles every 15 

months [4]. Therefore analysing generic databases 

with such a constant growth, raises a challenge for 
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scientist, in respect of being time consuming, 

expensive and impractical[5]. Needleman-

Wunsch[7] is one the most significant and widely-

used similarity algorithms for biological sequence 

comparison that adopts the dynamic programming 

method [1]. despite its high sensitivity in identifying 

best global alignments, it is very time consuming 

and computationally expensive process. This 

algorithm requires quadratic time for each 

comparison of two sequences[6]. Therefore, because 

of the complexity of this algorithm, there is a need 

for a methodology that could reduce the 

computation time while delivering accurate results. 

In this study, two programming paradigms are being 

compared for the parallelization of Needleman-

Wunsch algorithm on a cluster of SMP nodes. 

Specifically, an evaluation between different type of 

implementation paradigm such as pure OpenMP and 

pure MPI is provided in terms of execution time and 

speedup. 

The remainder of this paper is organized as 

follows. In the next section the multicore 

architecture and Performance Modelling is 

presented. In section 3 the original NW algorithm is 

described in detailed while in section 4 our method 

of parallelization and methodology is described and 

discussed. Section 5 explains the experimental 

results and comparisons and finally the last section 

will conclude the paper. 

 

 

II Multicore Architecture and 

Performance Modelling 

Multicore Architecture comes in many 

forms and are in this work roughly divided into two 

groups: distributed memory systems and shared 

memory systems. The respective groups are 

described and illustrated with simplified figures in 

this section (Fig. 1 and 2). 

 

2.1 OpenMP 

 
Shared memory architectures open up for 

efficient use of threads and shared memory 

programming models. The traditional way to take 

advantage of such architectures is to use threads in 

some way or other. POSIX threads (pthreads) are 

mostly used in HPC programming; however thread 

models can quickly generate complex and 

unreadable code. Recent advances in processor 

architectures with several cores on the same chip 

have made shared memory programming models 

more interesting. Especially the introduction of 

dual-core processors for desktops and multicore for 

workstation and servers, the last decade has made 

this area of research interesting for other groups 

than the HPC communities. 

 

OpenMP[14] is an API that supports an 

easy-to-use shared memory programming model. 

The easiness of inserting OpenMP directives into 

the parallel code has made this model popular 

compared to pthreads. This model leaves most of 

the work of thread handling to the compiler and 

greatly reduces the complexity of the code. The 

directives for parallelization in OpenMP allows the 

user to decide what variables should be shared and 

which of them should be private in an easy way, in 

addition to what parts of the code that should be 

parallelized. The simplicity of using OpenMP 

directives has made it a popular way of parallelizing 

applications. 

 

Shared memory systems (Fig.1) are systems 

with more than one processor where all the 

processor share memory. These systems are well 

suited for OpenMP, MPI, or mixed OpenMP-MPI 

programming models. Each processor sees the 

memory as one large memory. 

 

 

 
 

Fig.1. A Shared Memory System 

 

2.2 The Message Passing Interface – MPI 

MPI[8] [9] is an industry standard for message 

passing communication for applications running on 

both shared and distributed memory systems. MPI 

allows the programmer to manage communication 

between processes on distributed memory systems. 

The MPI is an interface standard for what an MPI-

implementation should provide such as functions 
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and what these functions should do. There are 

several implementations of MPI and the best known 

are probably MPICH and OpenMPI, both open 

source version implementations. Most vendors of 

HPC resources also have their own proprietary 

implementation of MPI with bindings for C, C++ 

and Fortran. SCALI [10] is probably the best known 

Norwegian vendor of MPI implementations. The 

first MPI standard was presented at Supercomputing 

1994 and finalized soon thereafter. The first 

standard included a language independent 

specification in addition to specifications for ANSI-

C and Fortran-77.About 128 functions are included 

in the MPI 1.2 specification. This interface provides 

functions for the programmer to distribute data, 

synchronize processes and create virtual topologies 

for communication between processes. 

Distributed memory systems (Fig.2) share 

interconnection but have private processor and 

memory. These systems are well suited for message-

passing libraries like MPI.  
 

 

Fig.3. Alignment of two sequences with score = 4. 

 

III. The Original Needleman-

Wunsch algorithm 

In order to implement this algorithm either 

the task or the data can be divided between 

processors. Task decomposition is about breaking 

down the job in different parts and assign each part 

of job to a specific processor while in data 

decomposition, all processors apply the same job on 

different portion of data. As a matter of fact, in most 

cases the nature of algorithm and study would 

determine which type of decomposition has to take 

place. 

 
 

Fig.2. A Distributed Memory System 

For this algorithm, data decomposition 

parallel approach is utilized in both OpenMP and 

MPI implementation. Here the data is divided 

according to size of the tile specified.  

 

 

 

 

 

 

 

 

 

 

3.1 NW Algorithm for sequence alignment 

The algorithm consists of two parts: the 

calculation of the total score indicating the 

similarity between the two given sequences, and the 

identification of the alignments that lead to the 

score. In this work we have concentrated on the 

calculation of the score, since this is the most 

computationally expensive part. The algorithm finds 

alignments by comparing entire sequences. The 

sequences are placed along the left margin (X) and 

on the top (Y). The matrix as shown in Figure 3 is 

initialized with decreasing values (0, -1, -2, -3 ……) 
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along the first row and first column to penalize for 

consecutive gaps. 

 

The other elements of the matrix are 

calculated by finding the maximum value among the 

following three values:  

 

( [ , 1]) ,

( [ , ]) ( [ 1, 1]) , (1)

( [ 1, ])

sim s i j gp

sim s i j sim s i j ss

sim s i j gp

 


    
  

 

Here, gp is -1, and ss is 1 if the elements 

match and 0 otherwise. However, other general 

values can be used instead. Following this 

recurrence equation, the matrix is filled from top left 

to bottom right with entry  ,i j  requiring the 

entries , 1i j  ,  1, 1i j  and  1,i j . Notice 

that  ,SM i j   corresponds to the best score of the 

subsequences 1 2, ,........, ix x x  and 1 2, ,........, jy y y . 

Since global alignment takes into account the entire 

sequences, the final score will always be found in 

the bottom right hand corner of the matrix. In our 

example, the final score 4 gives us measures of how 

similar the two sequences are.  

Parallel sequence alignment programs based 

on two different approaches OpenMP and MPI are 

developed in our research to compare the 

performance of both the models on our underlined 

architecture (section 4.1 and 4.2). The two programs 

differ on how the memory architecture is used 

during implementation. Both programs are written 

using C language. 

 

IV. Approach and parallelization 

methodology 

4.1 OpenMP Implementation for sequence 

alignment 

In the shared memory implementation, 

based on the size of the tile (explained in section 

4.2) provided as a parameter by the programmer, the 

original long sequence is divided into subsequences. 

One of these subsequences is kept by the main core 

and the rest of the subsequences are sent to  1n  

cores to execute in parallel. Here number of 

working cores corresponds to the number of threads 

which is given as parameter. All these working 

cores (including main core) will execute in parallel. 

Each core operate on different set of data for 

construction of similarity matrix of Figure 3 [11]. 

After doing the subsequence alignment, all of these 

 1n cores will send the alignment results to the 

main core. The main core will combine the 

subsequence alignment, sent by  1n  cores, to 

compute the final alignment score. 

Our code has been tested on a twelve core 

workstation with 2.66GHz processor with 8 GB 

cache system. The architecture we used for our 

shared memory implementation is as shown in Fig 

1. On this architecture OpenMP model Fig. 4 

generates threads for parallel execution of the code. 

The Fig 4 shows that, out of the n threads ( n given 

as parameter), one master thread generates the 

 1n  slave threads and each slave thread will run 

on each core simultaneously. Once the execution 

has finishes the result was given back to the master. 

The thread then sets its flag to inform master to 

issue next data for execution.  Each thread executes 

data from each tile.  

4.2 MPI Implementation for sequence 

alignment 

For very long sequences, the sequence will 

be first cut into several sets of subsequences, and 

each of these subsequences will be aligned by each 

MPI processes executing on each cores parallely 

[12]. 

Here number of working cores corresponds 

to number of processes. For the cases when 

sequences are extremely long and cannot be aligned 

even with OpenMP due to limitation of memory, 

they are divided into several shorter pieces 

according to tile size. The number of iterations 

(number of tiles) is 

 

(2)
Sequence Size

Tile Size
  
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Fig.4. OpenMP – Programming Model 

Our input is a matrix with two sequences, 

one along x axis and other along y axis. The tile size 

which is also two dimensional (along x  and y  

axis), divides the similarity matrix of Fig. 3. 

Therefore total number of tiled iterations which we 

call here as tileXCount and tileYCount will be 

calculated according to equation 2.   

For example, if sequence size is 1 MB and 

tile size is 16384x16384 B then the number of 

iterations tileXCount (sequence along x  axis) 

becomes
1048576

64
16384

 . So 64M  . ( M  of Fig. 

6) Similar calculation will go for tileYCount 

(sequence along y axis) depending upon the 

sequence size and tile size along y  axis.  That will 

be the value of N  of Fig.6.  

The general MPI Model is shown in Fig. 5. 

In our architecture we have such twelve cores per 

node.  

 
 

Fig. 5. MPI – Programming Model 

As shown in Figure 6 the computation goes 

in wavefront manner, i.e once the first row and first 

column, i.e tile(0,0) has been filled with all the 

computed entries, calculated according to equation 

1, the next tile to be calculated is south-east. Its 

value is dependent upon its immediate left column, 

top row and top-left element. For long sequence 

files, the size of the matrix also grows very large 

and after some point it could not get fit into 

memory. Hence to handle such long size files, we 

have used chunks of data (tiled data) for 

computation as show in the Fig. 6.  

 

Here N
T

 
 

 = tileYCount and M
T

 
 

 = 

tileXCount are the number of tiles column-wise and 

row-wise respectively. Where N  and M  are the 

sequence size along y axis and x axis respectively 

and T  is the tile size in bytes. When the execution 

starts, first tile (0,0) will get executed. 

 
Fig.6. Execution of tiles in wavefront manner 

 

 

The value will get stored in right column 

and bottom row of the corresponding tile. In the 

next run tiles  0,1 and  1,0  will be executed 

parallel. They will also store their respective 

computed values in right column and bottom row. 

Then in the next step, tiles   0,2 ,  1,1  and  2,0  

will get executed simultaneously. Thus the number 

of steps for execution of tiled iteration will be 

1M N  , which is the number of diagonals as 

shown by the dotted lines in the Fig. 6. For example, 

for a matrix of size 4x4, number of actual steps 
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(diagonal rows) to be calculated in tiled iteration 

space would be (4+4-1=7). 

The two different parallel implementations 

differ on how the memory architecture is used 

during implementation. One program is called the 

thread based shared memory, in which computation 

is started for the full length sequences at the 

beginning, and after the sequences are cut into sub-

sequences, all the sub alignments will follow the 

single, uniform sequence. The MPI implementation 

is based on distributed memory architecture, in 

which sequences will be cut first and each of the 

sub-sequences will build their own computation for 

their individual alignments. Both programs are 

written using C++ language.  

V.  Results 

The experiments described in the paper 

were carried out on two Linux based workstation of 

Intel Xeon 5650 processor with 2.66GHz clock 

speed of 12 cores each. We have done the analysis 

on execution time and speedup with varying number 

of threads and chunk sizes for OpenMP. We have 

also done the analysis on execution time and 

speedup with varying number of processes and tile 

size for MPI as parameters. The corresponding 

execution time and speedup are reported in Fig. 7 

and Fig. 8. The results were obtained for 

configuration such that for OpenMP implementation 

the number of threads generated will correspond to 

number of working cores and for MPI 

implementation number of processes corresponds to 

number of working cores. 

The major advantage of MPI programming 

is program speedup in terms of time, because each 

process processes a different piece of the same job 

simultaneously and independently. However, this is 

obviously the case for the MPI program, but not 

quite true for the shared memory system, which 

does not gain any speed improvement after some 

point. The reason is that in shared memory 

implementation based on fork and join model, no 

matter how many processors are used, every time a 

single (master) thread for the full length sequences 

is built at the beginning for the processors sub-

alignments, and it appears to be the most time-

consuming part of all alignment procedures. 

For testing the implementation over various 

length Sequences, four sample input files are chosen 

from a publicly available GenBank database [13] 

which have benchmark alignments. The first file 

consists of 512 KB character long, the second file 

consists of 1MB character long, the third file 

consists of 2 MB characters long and fourth is 4MB 

characters long. Table 1 and 2 depicted our analysis 

of both paradigms; its corresponding graphical 

representation is shown in Fig. 7, 8 and Fig. 10, 11. 

It shows that, for MPI implementation we obtained 

a very good speedup for large sequences compared 

to OpenMP implementation. We also obtained 

sufficiently satisfactory speed up for small and 

medium sequences. The results of the simulations 

are shown in the following figures: 

 
(a) For Tile Size 8192x8192 

 

 

 
(b) For Tile Size 16384x16384 

 

Fig. 7. Time analysis for OpenMP implementation 

on input files of various size. 
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(a) For Tile Size 8192x8192 

 

 
(c) For Tile Size 16384x16384 

 

Fig.8. Speedup analysis for OpenMP 

implementation on input files of various size. 

 

From table 1, for both tile sizes, it is 

observed from the highlighted entries that as the 

sequence size increases the optimum performance 

obtained with respect to time and speedup improves 

with the decreasing number of threads (working 

cores). For example, as shown in table 1, for 

sequence size 512KB for both tile sizes the optimum 

performance obtained on 12 threads. For sequence 

size 1MB, the optimum performance is on 10 

threads. Similarly for sequence size 2MB and 4MB 

the optimum performance is on 8 and 6 threads 

respectively. This can also observed from the curves 

of OpenMP graphs of Fig.7 and 8 for time and 

speedup respectively. 

This is probably because of the following 

reason. The total number of processors is two with 

each containing six cores. The layout is illustrated in 

Fig. 9, reproduced and simplified from [13]. When 

running tests with both tile sizes on, for example, 4 

cores, we must use a minimum of 

8192 8192
128

4( )

x xsizeofBytes
Mb

cores
  of data for 

each core, when 8192x8192 tile size is used  

and 

16384 16384
512

4( )

x xsizeofBytes
MB

cores
  of data for 

each core, when 16384x16384 tile size is used. 

How the data is exactly located on each core 

is not known, but assume that the tile size matrix is 

located as depicted in Fig. 9, where the shaded 

memory block contains the data from the master 

working core. Now, when the algorithm uses 12 

OpenMP threads, all the cores will access the 

memory block in all iterations of the solver. For the 

cores to retrieve this memory, the cores farthest 

away from the data might have to idle several cycles 

to get the data to be processed. This will happen 

even if the data is not distributed as in Fig 6, 

because of the nature of OpenMP. 

 

 
 

Fig.9. Data resides in the shaded memory block, 

longest away from CPU11 and CPU12. 
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The total overhead, Ot, for an OpenMP loop on 

processors executed by a number of threads can be 

expressed as 

t comm threadsO T T  ------------ (3) 

Where Tcomm is the time required for communication 

and Tthreads is the overhead from spawning, 

destroying and switching between active threads. 

For a for-loop in OpenMP, a loop of i
th
 iterations is 

divided into chunk size of k, so that the number of 

messages sent is 

i

k
---------------- (4) 

and the size, m of the messages are 

m = k *sizeof(datatype)-------------(5) 

The cost of communication of k bytes is known 

to be 

Tcomm= Tm+ βm --------------(6) 

Where Tm is the latency of the respective cache level 

or memory where the data is located and β is the 

bandwidth between the processors. Summarizing 

these formulas, we get a general expression for 

overhead of communication in an OpenMP for-loop, 

( * * ( ))comm m

i
T T k sizeof datatype

k
  ------(7) 

 

There are three variables in this equation we 

should look into to provide a better understanding of 

the estimate, the bandwidth β, cache-latency Tm and 

chunk size k. 

 

- The bandwidth could well be related to how 

many processors share the communication bus, 

so this variable could be decreasing as the 

number of processors increases. 

- Tm can be found with the same method as β, only 

with NULL-size messages. Depending on how 

many processors that participate in the 

computation, the length of the data bus and how 

many processors using the data bus at the same 

time will influence the latency. As more cores 

participate in the for loop, it is likely that we end 

up with a decreasing average latency. 

- The tile size k can be specified statically with the 

OpenMP keyword schedule (static, tile size). 

This is however not recommended, since a 

normal programmer seldom knows the optimal 

tile size. By not specifying the tile size, it is set to 

be decided in runtime and therefore difficult to 

know. Finding the optimal tile size can be done 

empirically by comparing different tile sizes to 

the default schedule (runtime). 

Further the speedup graphs indicate that we get 

little speedup in our NW algorithm with this 

strategy. This could be because of border value 

exchanges between tiles during the calculation, or 

that the latency, Tm, is less significant than the 

bandwidth, β, in Equation 7. 

If a thread migrates to another CPU for some 

reason, this migration takes extra time and must be 

included in the overhead calculation. To test if this 

was a significant source of overhead, we used the 

bindprocess() function-call to bind the OpenMP 

threads to a given CPU. However, this did not give 

any notable performance improvements. Since the 

bindprocess() function did not give any 
improvement, it might be that threads already are 

bound to a CPU in IBM’s OpenMP-implementation, 

or that threads did not migrate before we used the 

bindprocess() call. 

In case of pure MPI, the program is designed to 

have multiple instances of itself running in parallel 

on different processors. Each process has its own 

local memory and communicates with other 

instances by sending messages to them. To be able 

to distinguish between those processes, a unique id 

is assigned to each of them. Such message passing 

implementation is more difficult to program than 

multithreaded programs as all the communication 

between nodes has to be done explicitly.  

A lot of care has to be taken to maximize the 

communication throughput by grouping 

communication tasks where it is possible. The 

overhead created by message passing can be 

outweighed by the advantage of explicitly 

expressing locality of a process. Making the 

communication between processes explicit also 

reduces problems with false sharing. 
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In our MPI implementation, the complete data 

which is to be computed is distributed to the node 

where the cores will execute it in parallel. These 

data is located in a memory bank close to the core 

on each node. So the idle time when waiting for 

memory is avoided because of the close proximity 

to the memory[13]. With larger sequence size, the 

MPI processes achieve greater performance because 

all of the data resides in the level 3 cache which can 

also be inferred from figure 7.  

With several cores sharing data on each node, a 

significant source of communication overhead 

between the cores is reduced. Hence with pure MPI 

model, for large size file, this technique gives 

improved performance. Because if the sequence size 

is small the overall time required to distribute data 

to all nodes will be comparatively more than the 

time required for this distribution for large sized 

data.  

As discussed above, our results also show 

the same observation for MPI model. Table 2 shows 

from the highlighted entries that as the sequence 

size increases the optimum performance obtained 

with the increasing number of processes and tile 

size. For example, when sequence size is 512KB the 

optimum performance obtained on 12 processes. For 

sequence size 1MB the optimum performance was 

on 16 processes. Similarly for sequence size 2MB 

and 4MB the optimum performance is on 20 and 24 

processes respectively. This can also observed from 

the curves of MPI graphs of Fig.10 and 11 for time 

and speedup respectively. 

This is because for big tile size, more data has 

been send to the slave process and hence 

communication between the processes gets reduced, 

which would be otherwise more for smaller tile size. 

Similarly as number of processes increases more 

data gets computed simultaneously. Hence for 

bigger file size MPI gives improved performance.    

 

 

 

 
 

(a) for tile Size (8192x8192) 

 

 
(b) for tile Size (16384x16384) 

Fig.10. Time analysis for MPI implementation on 

various sequence size input files   

 

 
(a ) for tile Size (8192x8192) 
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(b) for tile Size (16384x16384) 

Figure 11. Speedup analysis for MPI 

implementation on various sequence size input files 

VI. Conclusion 

 In this paper we have 

1. Parallelized and optimized an existing 

Needleman-Wunsch algorithm with OpenMP 

and MPI and studied the performance with 

respect to time and speedup for large sequence 

size using appropriate tile size. 

2. Did a study of OpenMP and MPI on NW 

algorithm and conclude that depending upon 

sequence size, tile sizes and number of threads 

and processes as parameters on our architecture, 

in some cases OpenMP shows better 

performance while in all the other cases MPI 

provides the optimum performance. 
3. Proposed a general model for estimating 

overhead in for-loops in OpenMP. 

 

To parallelize the Needleman-Wunsch 

algorithm codes we have used both OpenMP and 

MPI to explore the possibilities of maximum 

performance. MPI was used globally to exchange 

border-values and particles while OpenMP was used 

to parallelize compute-intensive for-loops. While 

OpenMP is the easiest way to parallelize loops, our 

results showed that overhead from communication 
between the processors makes it a low-performing 

API compared to MPI where data is communicated 

explicitly. We suggested a general expression to 
model the overhead of communication in OpenMP 

loops based on number of loop-iterations, chunk 

size, latency and bandwidth. We also improved the 

way memory was allocated and freed dynamically 

during parallel execution in order to handle large 

size sequence file and tried to improve the 

scalability of the parallel code. Our results show that 

we have achieved speedup of 8.06 on 512KB 

sequence size with 12 threads for OpenMP  and 4.16 

on 2MB sequence size with 20 processes for MPI 

implementation. 
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Table 1. Performance Evaluation of OpenMP on both tile sizes.  
 

 

Sequence Size: 512KB Sequence Size:  1 MB Sequence Size: 2MB Sequence Size: 4MB 

Tile 
Size 

8192x8192 16384x16384 8192x8192 16384x16384 8192x8192 16384x16384 8192x8192 16384x16384 

Threa

ds 

Time  

(sec) 

Spee

d up 

Time  

(sec) 

Spee

d up 

Time 

(sec) 

Spee

d up 

Time 

(sec) 

Spee

d up 

Time 

(sec) 

Spee

d up 

Time 

(sec) 

Spee

d up 

Time 

(sec) 

Spee

d up 

Time 

(sec) 

Spee

d up 

1 3498   3498   8573   8573   14,834   14,834   22,583   22,583   

2 3056 1.14 2875 1.22 7321 1.17 6385 1.34 12,765 1.16 12,643 1.17 16,538 1.37 18,638 1.21 

4 2754 1.27 2095 1.67 6739 1.27 4823 1.78 10,384 1.43 9346 1.59 14,574 1.55 15,735 1.44 

6 2473 1.41 1584 2.21 6194 1.38 2847 3.01 8376 1.77 6934 2.14 12,654 1.78 10,749 2.10 

8 2176 1.61 1080 3.24 4945 1.73 1947 4.40 6754 2.20 3727 3.98 13,354 1.69 14,745 1.53 

10 1963 1.78 798 4.38 3856 2.22 1265 6.78 7394 2.01 4226 3.51 14,959 1.51 15,746 1.43 

12 1642 2.13 434 8.06 4356 1.97 1343 6.38 8394 1.77 4915 3.02 15,637 1.44 16,984 1.33 
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Table 2. Performance Evaluation of MPI on both tile sizes.  
 

  Sequence Size: 512KB Sequence Size:  1 MB Sequence Size: 2MB Sequence Size: 4MB 

Tile 

Size 
8192x8192 16384x16384 8192x8192 16384x16384 8192x8192 16384x16384 8192x8192 16384x16384 

Proces

ses 

Time  

(sec) 

Spee

d up 

Time  

(sec) 

Spee

dup 

Time 

(sec) 

Spee

d up 

Time 

(sec) 

Spee

dup 

Time 

(sec) 

Spee

d up 

Time 

(sec) 

Spee

dup 

Time 

(sec) 

Spee

d up 

Time 

(sec) 

Speed 

up 

1 3498   3498   8573   8573   14,834   14,834   22,583   22,583   

4 3087 1.13 2754 1.27 7148 1.20 6548 1.31 10,463 1.42 11,568 1 18,623 1.21 14,658 1.54 

8 2638 1.33 2254 1.55 6983 1.23 4587 1.87 8835 1.68 9735 1.52 16,563 1.36 12,745 1.77 

12 2246 1.56 1514 2.31 5598 1.53 3547 2.42 7723 1.92 7456 1.99 14,749 1.53 11,789 1.92 

16 2429 1.44 2389 1.46 3224 2.66 2845 3.01 4873 3.04 6587 2.25 12723 1.77 9576 2.36 

20 2598 1.35 2647 1.32 3387 2.53 3125 2.74 3565 4.16 5426 2.73 10873 2.08 8423 2.68 

24 2798 1.25 2748 1.27 4523 1.90 3268 2.62 6761 2.19 6014 2.47 8564 2.64 7124 3.17 

 


