
 International Journal of advanced studies in Computer Science and Engineering

IJASCSE, Volume 3, Issue 2, 2014

www.ijascse.org Page 15

Feb. 28

Five Modular Redundancy with Mitigation Technique

to Recover the Error Module

Haryono
[1]

, Jazi Eko Istiyanto, Agus Harjoko, Agfianto Eko Putra

Doctorate Program in Computer Science, Department of Computer Science and Electronics

Faculty of Mathematics and Natural Sciences, Gadjah Mada University

Yogyakarta, Indonesia

Abstract— Hazard radiation can lead the system fault

therefore Fault Tolerance is required. Fault Tolerant is

a system, which is designed to keep operations running,

despite the degradation in the specific module is

happening. Many fault tolerances have been developed

to handle the problem, to find the most robust and

efficient in the possible technology. This paper will

present the Five Modular Redundancy (FMR) with

Mitigation Technique to Recover the Error Module.

With Dynamic Partial Reconfiguration technology that

have already available today, such fault tolerance

technique can be implemented successfully. The project

showed the robustness of the system is increased and

module which is error can be recovered immediately.

Keywords- FPGA, Fault Tolerance, Dynamic Partial

Reconfiguration

I. INTRODUCTION

Fault is a changed in the value of a variable or

unexpected logic in the system hardware, failure is the

inability of a system to perform the operation from

predefined requirements [1]. A system fault has a chance for

failure, it requires a Fault Tolerant system. Fault Tolerant is a

character system that is designed to continue to run its

operations despite the degradation of function in the specific

module, do not stop completely when the failure occurred on

a particular module [2].

Fault tolerance design in [3] and [4] is using Triple

Modular Redundancy (TMR) by means triplicate a module

or a particular function. In TMR at least two modules

produce the same results, then the system is considered to be

running correct. Since in the orbit in such area is having

many radiations, as quoted in [5] the TMR design is not

enough to mitigate the entire fault that is occurs, it may occur

at two memories at the same time and same position and then

give two modules in error result. In [5] Nine Modular

Redundancy (NMR) has been developed to try to handle the

TMR problem, but leads in using a lot of resources. To full

fill the gap between those two designs we therefore create a

new methodology, we called Five Modular Redundancy

(FMR) with Mitigation Technique to Recover the Error

Module. In [5] use nine redundancies, but have not been

implemented a recover technique when some module is an

error, therefore degradation of a system cannot be avoided.

By implementing recovering technique to the error module

such degradation is kept as minimal as possible. To

overcome in TMR technique, this design will handle the

problem about radiation bombardment that makes two error

modules at the same time.

The scope of this project is about FMR design with

mitigation technique using DPR technology, we assume

internal design is free from a fault in which this Fault

Tolerance aims to handle a fault that is caused by external

factors e.g. hazard radiations. This paper will show the

design, implementation and testing of Five Modular

Redundancy with mitigation technique to recover the error

module. The testing showed, the design that is developed

able to handle the error that happen in the two modules at the

same time and able to detect and recover the error module.

II. DESIGN OF FIVE MODULAR REDUNDANCY WITH

MITIGATION TECHNIQUE TO RECOVER THE ERROR MODULE

Five Modular Redundancy (FMR) is the technique to

duplicate the same module to five times. The system still

has correct resulted since the modules are having correct

result with at least three modules, when the error is

happening in the two modules the system can still tolerance

to such error. Using Dynamic Partial Reconfiguration

(DPR) will not interrupt the system which is running,

therefore mitigation to the error module can be done without

disturbing the system. DPR can be done very fast and low

power consumption because we only reconfigure to the

partial area of an FPGA.

Image 1 shows the design of the FMR, having five

modules that are identical, the output of each module will be

sent to Voter and Error Detector, then the Voter will vote

the result from each module and find the output. Error

Detector is the important role, it plays to detect the modules

which are error, one the error is detected, Error Detector

will send the data to Dynamic Partial Reconfiguration

(DPR) system. DPR will then do the reconfiguration to the

module which is an error.

 International Journal of advanced studies in Computer Science and Engineering

IJASCSE, Volume 3, Issue 2, 2014

www.ijascse.org Page 16

Feb. 28

VOTER &

ERROR

DETECTOR

Modul 1

Modul 3

Modul 2

in

in

in

Five Modular

Redudancy

Modul 4in

out

Dynamic Partial

Reconfiguration

System

Modul 5in

Image 1. Five Modular Redundancy Design

Voter architecture can be seen in the Image 2. At least

three modules which are correct, the FMR will have a

correct result. The output of each module will be sent to the

"And" logic as shown in the Image 2 (a) with a voter logic

combination that is shown in the Image 2(b).

(a)

F = (M1 and M2 and M3) or

(M1 and M2 and M4) or

(M1 and M2 and M5) or

(M1 and M3 and M4) or

(M1 and M3 and M5) or

(M1 and M4 and M5) or

(M2 and M3 and M4) or

(M2 and M3 and M5) or

(M2 and M4 and M5) or

(M3 and M4 and M5);

(b)

Image 2. Voter of FMR

The result of voter will be compared to each module, the

modules that have output not same with the result of voter

will be the fault/error module. The error Detector variable

holds the modules which are error and which are correct, it

is an array variable that has length five bits. Following is a

pseudo code configuration of error detector:

if (F is equal M1) then ErrorDetectorVariable[0] =

1 else ErrorDetectorVariable[0] = 0

if (F is equal M2) then ErrorDetectorVariable[1] =

1 else ErrorDetectorVariable[1] = 0

if (F is equal M3) then ErrorDetectorVariable[2] =

1 else ErrorDetectorVariable[2] = 0

if (F is equal M4) then ErrorDetectorVariable[3] =

1 else ErrorDetectorVariable[3] = 0

if (F is equal M5) then ErrorDetectorVariable[4] =

1 else ErrorDetectorVariable[4] = 0

The structure of DPR is shown in the Image 3.

Microblaze is a microprocessor that handles the Dynamic

Partial Configuration process. The Bit stream is saved in the

non volatile memory, the frame data contain FPGA

Location, Configuration data and Check Sum. Error

Detector will send the data when the error is detected trough

bus to Microblaze processor. When Microblaze receives the

data from Error Detector, the Microblaze read the data of

partial Bitstream from memory compact flash, then the data

is sent trough ICAP, ICAP will do the configuration by

placing the configuration data to the portion of the FPGA.

Image 3. Structure of DPR

III. IMPLEMENTATION

Recovering modules which are error is the important part

in this design because we expect the system will have a

better reliability, once it is detected the error in a module the

system should recover the module. Recover step can be split

AXI Lite Bus

FPGA

Micro

Blaze

Processor

Memory

Compact

Flash

ICAP

Module 1

Module 2

Module 3

Module 4

Module 5

Error
Detector

and Voter

IP

 International Journal of advanced studies in Computer Science and Engineering

IJASCSE, Volume 3, Issue 2, 2014

www.ijascse.org Page 17

Feb. 28

into the following stage: first is checking the output of each

module in the Detector Unit, second is when error module

is detected interrupt to the DPR system, third is DPR

system will receive new interrupt to recover a module which

is an error and then doing recovering by dynamic partial

reconfiguration correspond to the error module.

Checking the output of each module in the Detector Unit

can be done by putting the VHDL checking in the Voter

Unit. The VHDL code is shown in the following code:

 ErrorDetector(0) < '0' when FtResult = PR_Input1 else '1';

 ErrorDetector(1) < '0' when FtResult = PR_Input2 else '1';

ErrorDetector(2) <='0' when FtResult = PR_Input3 else '1';

ErrorDetector(3) < '0' when FtResult = PR_Input4 else '1';

ErrorDetector(4) <='0' when FtResult = PR_Input5 else '1';

It is checking the result of the FMR Fault Tolerance

output, if the output of particular module is not same with

the output of the FMR Fault Tolerance output then we

recognize it is an error module. After the error is detected,

we do an action to recover the error module. In Microblaze

processor we check the ErrorDetector data regularly, we

can adjust the interval to check the ErrorDetector depends

on the need. By reading the address of the custom

Intellectual Property (IP) of FMR fault tolerance to

particular ErrorDetector variable, we can get the

information which one the module that is error, following is

the code to get the data:

int error_detector_module =

Xil_In32(XPAR_DUALMODEFT_0_BASEADDR);

int *bits = get_bits(result, 5);

if(bits[0] == 1)

{

 PR_Action('1'); // Action for DPR

}

When the error_detector_module is more than zero that

means the error in module is detected, the error module can

be checked by the position of bit, Least Significant Bit

(LSB) will be the first module followed by second module

and so forth. In the above code shown that

error_detector_module is converted to array so that can be

easy to check the error module.

DPR flow is described in the Image 4, When the error

module is recognized, the Microblaze processor will read

the bit stream in the compact flash non volatile memory, if

the error module is first module then read "module1.bit"

file, if the second module then reads "module2.bit" file and

so forth. Reading trough System ACE and save to the

system ACE Buffer. Then loop to each data and send the

data to ICAP, there is XHwIcap_DeviceWrite function to

write the data to ICAP. ICAP will handle of the rest, to

where the reconfiguration data will be place to the Memory

location of FPGA.

Image 4. DPR data flow to recover error module

IV. TESTING AND DISCUSSION

The design which is offered is to overcome about the two

models of fault tolerances that have been developed, they

are TMR with mitigation technique and NMR. Table 1 is

the comparison between them and the design that is offered.

TMR with mitigation technique will end when the two

modules is an error at the same time, this is can be happened

in the space, to handle this so we implemented FMR, in

which limit tolerance to a fault can be up to two modules.

NMR that has been developed can still work if there are

three error modules at the same time, but in the mean time

during operation the module that is error cannot be

recovered from erroneous, this will make the system

become degraded in several times. To overcome the NMR

we implement mitigation technique that can mitigate or

recover the error modules.

TABLE I. COMPARISON BETWEEN FAULT TOLERANCE TECHNIQUES

Technique
Limit Tolerance

 To Fault

Mitigation to

Error module

TMR with mitigation

technique

Up to one error

module

Yes

NMR with TMR scheme Up to three error

modules

No

FMR with mitigation

technique

Up to two error

modules

Yes

Testing of fault tolerance can be done by providing a

direct test on the hardware of FPGA device, by giving a

large ion injection or given power supply disturbance [6].

However, this method is relatively expensive and difficult to

obtain expected environment. Another method is using

partial reconfiguration, [7] demonstrated that the partial

reconfiguration is an effective way to perform fault

injection. This method is also done by [8] and the same

thing is done by [9], so authors chose the second way. The

FPGA

MicroBlaze

Processor

Compact Flash

module1.bit,

module2.bit ..

ICAP

Module 1

Module 2

2

Module 3
3

Module 4

4

Module 5
5

 International Journal of advanced studies in Computer Science and Engineering

IJASCSE, Volume 3, Issue 2, 2014

www.ijascse.org Page 18

Feb. 28

structure of the test is not different with the structure of

DPR that was described in the image 3, in the testing, we

add the computer connecting to the MicroBlaze to acquire

the data during a testing that is conducted, it is shown in the

image 5.

Image 5. Structure of testing based on fault injector using partial

reconfiguration.

The original partial bit stream is made corrupt or blank.

Fault injection with partial reconfiguration, by changing

directly to a partial Bitstream files are at risk because can

permanently damage the FPGA device, in which the bits

that have been extracted from the tools provided by Xilinx

is like a program "exe" that is gotten from compiling

windows programs. There is Jbits program that can act to

change the partial bits, then dynamically reconfigured the

FPGA. Currently we choose by making a blank

configuration of the module that is tested, this method can

be done trough partial reconfiguration using the Microblaze

processor.

We send a command from computer to Microblaze to do

the reconfiguration with blank reconfiguration to a

particular module. A module which is applied to reconfigure

by blank module is selected randomly each 500 ms, and

then we analyze the data after reconfiguration with blank

module. The result is following: first is after various

randomize reconfiguration to a particular module, mitigation

or recovering to a particular module that is blank can be

reconfigured again to become a correct module without

giving effect to a system that is running. Second is FMR

fault tolerance still works as expected by sending some data

to a module and then a module give feedback as expected.

We also made two modules at the same time to be in error

state, the FMR also can have a correct result.

The speed to recover the module which is error depends

on the size of the bit stream. To get the speed we apply

calculation in real code application. We add the AXI Timer

IP to our DPR system. We initiated and started it by

following code:

int Status = XTmrCtr_Initialize(&TimerCounterInst,

XPAR_AXI_TIMER_0_DEVICE_ID);

XTmrCtr_Start(&TimerCounterInst,0);

The methodology to take the time which is required to do

recovery to each module is following: first is resetting the

timer counter because if we don't reset to some period the

counter will overflow. The second is getting the counter

register variable. Then do the recovery. After finishing in

recovery then we take the counter register again and put it in

the variable. Following is the code that we have

implemented:

XTmrCtr_Reset(&TimerCounterInst,0);

int startExe =

XTmrCtr_GetTimerCounterReg(XPAR_AXI_TIMER_0_BAS

EADDR,XPAR_AXI_TIMER_0_DEVICE_ID);

get_modul_error_and_recovery();

int endExe =

XTmrCtr_GetTimerCounterReg(XPAR_AXI_TIMER_0_BAS

EADDR,XPAR_AXI_TIMER_0_DEVICE_ID);

Our Microblaze processor speed is 100MHz, one integer

represents one clock cycle, in which one clock cycle is 10

ns. Table II shows the speed of recovering to each module,

it includes reading the file in Compact flash and Writing to

the ICAP. The size of the module is varied depends on the

number of resources which is used, it can be different

because when we use Pblock function to draw to a device in

Plan Ahead is varied.

TABLE II. SPEED OF RECOVERING ERROR MODULE

Module Size (KB) Speed (ms)

1 128 224.93

2 120 209.66

3 81 141.59

4 128 225.00

5 142 261.57

We need to estimate how much power that is required if

using FMR. The calculation uses Xilinx Power Estimator

(XPE) for Virtex 6. Table 3 is a calculation of power that is

required when each module is using one microblaze

processor. There are 1573 LUT Logic, 103 Distributed

RAM and 1456 flip flop. In that figure showed, the power

that is required for each module is 0.010 w. Therefore, if

using FMR we just multiply by 5 so become 0.050 w. If

using FMR we multiply by 3 become 0.030 w. By using

FMR we must consider about the power budget, will it

satisfy with the budget or not. By using XPE to do a

calculation estimation of power consumption above, we can

decide whether the fault tolerance can be implemented.

FPGA

DEVICE UNDER

TEST

MicroBlaze

Processor
Computer

 International Journal of advanced studies in Computer Science and Engineering

IJASCSE, Volume 3, Issue 2, 2014

www.ijascse.org Page 19

Feb. 28

TABLE III. ESTIMATION FOR EACH MODULE USING XPE

Testing using fault injection is done many times in a certain

time. The testing aims to know will the system run stable

without fault, will the system have a correct result / output

and can the system detects the error and recover the module

which is an error. The testing is done by giving the fault

injection in a periodic time every one second to random

module. Fault injection is given to module 1 to 5 and also

fault injection is given to two modules at the same time.

Image 6 is the structure of each module. Each module

contains extension hamming code calculation to decode and

encode the data. The input is the data that is to be encoded,

the output will be encoded data and decoded data of

hamming code. By that structure of each module we can

know how the voter and how the error detector will work.

Can the voter compare the data from the output of each

module to get valid result and can the error detector detect

module which is an error.

Image 6. The structure of each module

In image 7 showed there are three important cycles. First

is shown that the FMR system is injected the blank module,

second when the FMR consider having corrupt module we

send the data to system, then the system will send to each

module to do hamming code calculation. Each module will

encode and decode, and give the output to the voter. The

voter now has a data and sends the data to output. Third, the

fault tolerance system detected the error and then the system

will do DPR to mitigate the error module. From those cycles

we showed in the image 7 that the system was injected by

blank module to module 3, 4 and 5, because we injected

blank module, now those modules were corrupted. To know

whether the system can do the operation if there are error

modules, we send the data (1010) to the system immediately

before the system do recovery. Each module in the system is

encoding and decoding, and sends the data to voter. The

data from voter is sent to a computer to be evaluated, it

showed 00100101 for encoding and 1010 for decoding, even

we introduce error in the first bit of encoding data the

system still can correct the data which is an error by

hamming code. After processing the data the system detects

the error in a module and continues to recovery error

modules. It showed modules 3, 4 and 5 were recovered.

Those cycles are done for more than one hour and the

system did DPR more than 3600 times, the result we got

that the system is stable, can correct the error module and

give output with correct data as well.

Image 7. Testing result of fault injection to FMR

Module

ENCODING with

Ext. Hamming

Code

DECODING with
Ext. Hamming

Code
Input Output 1st

Output 2nd

 International Journal of advanced studies in Computer Science and Engineering

IJASCSE, Volume 3, Issue 2, 2014

www.ijascse.org Page 20

Feb. 28

V. CONCLUSION

Five Modular Redundancy (FMR) can be implemented

successfully, when the error is happening in two modules,

the system still working properly. With mitigation technique

such error in module can be detected and corrected so that

the fault tolerance system will try to keep away from

degradation in each module. Using DPR, Five Modular

Redundancy with mitigation technique can be implemented

successfully. The speed to do recovering depends on the

size of the Bitsream. From Xilinx Power Estimator, compare

to TMR, FMR power consumption is slightly more, this

because we add two modules in the FMR.

VI. FUTURE STUDY

Future studies will add various functions to each module,

for example by putting the module with Microblaze

processor to do some tasks. Implement the fault tolerance

into a real application for On Board Computer of micro

satellite. Testing and analyze the behavior of FMR in a real

application. Scope for future study will be about

implementing the FMR into a real application based on

FPGA with DPR technology.

ACKNOWLEDGMENT

This project is supported by Satellite Centre - LAPAN

and Doctorate Program in Computer Science, Department of

Computer Science and Electronics, Faculty of Mathematics

and Natural Sciences, Gadjah Mada University. We would

like to acknowledge for their support in this project.

REFERENCES

[1] Avizienis, A., 1976, Fault-Tolerant Systems, IEEE

Transactions On Computers, 25, 12, 21-27

[2] Johnson, B. W. 1984, Fault-Tolerant Microprocessor-Based

Systems, IEEE Micro, 4, 6, 6-21

[3] Shinghal, D. dan Chandra, D., 2011, Design and Analysis of a

Fault Tolerant Microprocessor Based on Triple Modular,

International Journal of Advances in Engineering &

Technology, 1, 1, 21-27.

[4] Kastil, J., Straka, M., Kotasek, Z., 2012, Methodology for

Increasing Reliability of FPGA Design via Partial

Reconfiguration, The First Workshop on Manufacturable and

Dependable Multicore Architectures at Nanoscale

(MEDIAN'12), Annecy.

[5] Bentoutou, Y., 2011, A Real Time EDAC System for

Applications On Board Earth Observation Small Satellites,

IEEE Transactions on Aerospace and Electronic Systems, 3,

53, 1022 – 1027.

[6] Karlsson, J., Gunneflo, U., Lidén, P., Torin, J., 1991, Two

Fault Injection Techniques for Test of Fault Handling

Mechanisms, Proceedings of the IEEE International Test

Conference on Test: Faster, Better, Sooner, IEEE Computer

Society Washington, DC, USA, pp 140-149

[7] Lopez-Ongil, C.Entrena, L., Garcia-Valderas, M., Portela,

M.,Aguirre, M.A.,Tombs, J., Baena, V., Munoz, F. 2007, A

Unified Environment for Fault Injection at Any Design Level

Based on Emulation, Nuclear Science, IEEE Transactuons on,

Vol.54, no.4, pp 946-950

[8] Sterpone, L., Violante, M., 2007, A New Partial

Reconfiguration-Based Fault-Injection System to Evaluate

SEU Effects in SRAM-Based FPGAs, Nuclear Science, IEEE

Transactions on (Volume:54 , Issue: 4), pp 965 - 970

[9] Kafka, L., 2008, Analysis of Applicability of Partial Runtime

Reconfiguration in Fault Emulator in Xilinx FPGAs, Design

and Diagnostics of Electronic Circuits and Systems, 2008.

DDECS 2008. 11th IEEE Workshop on, pp. 1-4

