
IJASCSE, Volume 2, Issue 5, 2013

www.ijascse.org Page 7

Oct. 31

A New Parallel Algorithm for Minimum Spanning

Tree(MST)

Alok Ranjan Tripathy

Department of Computer Science & Engineering

College of Engineering Bhubaneswar

Bhubaneswar, India

B. N. B. Ray

Department of Computer Science & Application

Utkal University, Vani Vihar

Bhubaneswar, India

Abstract— This paper proposes a new algorithm for finding

minimum spanning tree (MST) of a weighted graph which is

intrinsically parallel, unlike Kruskal’s algorithm. As far as the

running time of the algorithm is concerned, it is faster than

both Kruskal’s and Boruvka’s algorithms. However the Prim’s

algorithm is bit faster than the proposed algorithm. The

parallel implementation of the proposed algorithm in shared

memory is also better than Boruvka’s parallel algorithm, but

comparable with Prim’s parallel algorithm.

Keywords- Minimum Spanning Tree; Parallel Algorithm;

I. INTRODUCTION

The minimum spanning tree problem (MST) for a
weighted graph is defined as follows:

Given a directed connected graph),,(wEVG  . V : Set

of vertices, E : Set of edges and RVVw : weight

function. The minimum spanning tree problem is to find a
spanning tree with minimum total weight. The MST problem
has applications in combinatorial problems with practical
applications in VLSI layout, wireless communication,
medical imaging [8], chemical warfare [2], graph steiner tree
problem and many other graph theoretical applications [6, 7,
11]. There exist serial and parallel algorithms for MST. The
earliest serial algorithm for finding MST was due to Boruvka
[8]. This algorithm has parallel structure which can be
parallelized easily. Other two frequently used MST are
Kruskal algorithm and Prim’s algorithm [4]. They are
difficult to parallelize. Because of intrinsic parallel nature
many parallel formulation of Boruvka’s are available in
literature.

These include Chung et al. [10] and Chong et al. [3].

Recently a hybrid approach of Prim’s and Boruvka was used
by Bader et al. in [5]. In [1,5] many parallel variants of
Prim’s algorithm are discussed.

The Parallel MST due to R. Setia et al. [9] was

implemented using threads and posix signal. They used cut
property of the graph to grow the tree by multiple threads
and finally trees were merged when they collide. The parallel
formulation of Boruvka uses a pointer jumping algorithm
[10] for forming connected components which is bit
complex. Bader et al. [5] implemented parallel Prim’s

algorithm in shared memory using multiple cores. They used
flexible adjacency list data structure which is simpler than
pointer jumping algorithm of Boruvka’s algorithm discusses
in [10]. From this study it appears that there is a gap between
the runtime of Boruvka’s and Prim’s algorithm. Boruvka’s
algorithm has more parallel structure than Prim’s algorithm
at the cost of slower runtimes.

However for large scale graphs MST problem parallel

implementations is an obvious choice. Thus there is a need to
develop parallel MST algorithms having intrinsic parallel
structure like Boruvka’s algorithm and runtimes comparable
with Prim’s algorithm. To this end a new MST is proposed,
which is faster than both Kruskal’s and Boruvka’s algorithm
but bit slower than Prim’s algorithm. In short our
contributions are as follows:

 Developed a new sequential algorithm for solving

MST problem of a graph.

 Parallelized the new algorithm in shared memory
architecture.

 Compared the Running Time (RT) of new
sequential algorithm with sequential Prim’s and
Kruskal’s and Boruvka’s algorithms for both sparse
and dense graphs. The runtime of the proposed
algorithm is better than both Krushkal’s and
Boruvka’s algorithms but higher than Prim’s
algorithm. However proposed algorithm has more
parallel structure than Prim’s algorithm and is
amenable for achieving high degree of parallelism
for large scale weighted graphs.

 Studied the runtime of new sequential parallel
algorithm.

The rest of the paper is organized as follows:

Section II reviews the necessary back ground. Section III
presents our proposed sequential and parallel MST
algorithms. Section IV discusses the parallel formulation of
the new algorithm. Finally conclusions are offered in Section
V.

IJASCSE, Volume 2, Issue 5, 2013

www.ijascse.org Page 8

Oct. 31

II. BACKGROUND

This section present some commonly used sequential
MST algorithms for weighted graphs.

A. Boruvka’s Algorithm [10]

This algorithm also known as Sollin’s algorithm which
constructs a minimum spanning tree iteratively using
following steps:
Algorithm 1

Step 1 (Choose lightest): Each vertex selects the edge
with the lightest weight incident on it. Each of the connected
components thus created has one cycle of size two between
two vertices that each selects the same edge. Of this pain, the
one with the smaller number is designated as the root of the
component and the cycle is removed. The component is then
a tree.

Step 2 (Find root): Each vertex identifies the root of the
tree to which it belongs.

Step 3 (Rename vertices): In the edge lists, each vertex is
renamed with the name of the root of the component to
which it belongs.

Step 4 (Merge edge lists): Edge lists, which belong to the
same component, are merged into the edge list of the root. In
other words, each connected component shrinks into a single
vertex.

Step 5 (Clean up): Now the edge lists may have self loops
and multiple edges. All self loops are removed. Multiple
edges are removed such that only lightest edge remains
between a pair of vertices.

In Boruvka’s algorithm the ith iteration is an input to

(i+1)st iteration, unless it has just one vertex in which case it
halts. The output spanning tree is the union of the set of
edges selected in Step 1, taken over all iterations. The
components formed in all iteration can be implemented using
depth first search in)(EVO  time. As the number of

vertices at the (i+1)st iteration is at most half of the number
of vertices at the ith iteration. The number of iterations of

Boruvka’s algorithm is atmost n2log . Thus the total running

time of Boruvka’s algorithm is

)log()()log(VEOVEOVEO  . Its parallel

implementation in shared memory with p processor is given

by 








p

VE
O

lg
 [1].

B. Prim’s Algorithm [4]

Prim’s algorithm grows minimum spanning tree of a

weighted graph),,(wEVG  from an arbitrary vertex ‘r’ as

root. Following notations are used in Prim’s algorithm.

For Vu , with][ukey : key associated with u .

][u : Key associated with parent of u .

Q : Priority Queue keyed with key value][ukey , Vu .

][uadj : Adjacent list of u .

),(vuw : Weight of the edge Evu ),(.

The steps of the Prim’s algorithm are as follows.

Algorithm 2

MST-PRIM),,(rwG

1. For each][GVu

2. do ][ukey

3. NILu ][

4. 0][rkey

5.][GVQ

6. while Q

7. do)MIN(-EXTRACT Qu 

8. for each][uAdjv

9. do if Qv and][),(vkeyvuw 

10. then uv ][

11.),(][vuwvkey 

The running time of the Prim’s algorithm is

)loglog(22 VEVVO  and)log(2 VVEO  using Binary

and Fibonacci heaps respectively. Recently Bader et al. [1]
gave a parallel Prim’s algorithm in shared memory with p

processors, whose running time is 








p

VE
O

log
. Though this

parallel runtime is asymptotically same with Boruvka’s
parallel runtime, but experimentally using a new data
structure call flexible adjacent list (FAL), they found that the
performance of Prim’s using FAL was better than Boruvka,s
parallel algorithm, where as parallel Boruvka discussed in
[1] uses adjacency list representation of the graph.

C. Kruskal’s Algorithm [4]

It finds a safe edge to add to the growing forest by
finding, of all the edges that connect any two trees in the

forest, an edge),(vu of least weight. It uses a disjoint-set

data structure to maintain several disjoint sets of elements.
Each set contains the vertices in a tree of the current forest.
The operation)(SET-FIND u returns a representative

element from the set that contains u . Thus, we can

determine whether two vertices u and v belong to the same

tree by testing whether)(SET-FIND u equals

)(SET-FIND v . The combining of trees is accomplished by

the UNION procedure.

Algorithm 3

MST-KRUSKAL),(wG

1. A

IJASCSE, Volume 2, Issue 5, 2013

www.ijascse.org Page 9

Oct. 31

2. for each vertex][GVv

3. do MAKE-SET)(v

4. Sort the edges of E into nondecreasing order by

weight w

5. for each edge Evu ),(, taken in nondecreasing order

by weight

6. do if)SET(-FIND)(SET-FIND vu 

7. then)},{(vuAA 

8. UNION),(vu

9. return A

The running time of Kruskal’s algorithm is)log(2 EEO .

III. PROPOSED MINIMUM SPANNING TREE (MST)

ALGORITHM.

In this section we present a new sequential algorithm for
finding the minimum spanning tree of a connected graph

),,(wEVG  . Then we discuss its runtime with the runtimes

of Kruskal’s, Prim’s and Boruvka’s algorithms

Algorithm 4

1. The proposed algorithm takes the input graph G and

keeps on applying Boruvka’s algorithm’s Step 1
through Step 3 recursively till the number of super

vertices reduces to a threshold value 20 n .

2. For 20 n , let),(''' EVG  be the multi graph

resulting from Step 1, Where  0
' nV  . Then

apply sequential Prim’s algorithm to 'G to get MST
'T of G . Note that the vertices of 'T are super

vertices of G .

3. In order to obtain the MST of G , just uncluster the

vertices of 'T until their sizes reduces to one.

Since in the proposed algorithm Step 1 and Step 2 are

called recursively and they are independent steps of
Brouvaka’s algorithm, so they can be easily parallelized in
multiprocessor system whereas the parallelization of Step 3
is of no interest as it is executed only once on limited number
of super vertices of multi graph in the life time of the
algorithm. Thus unlike classical Prim’s and Kruskal’s
algorithms, our sequential algorithm has more parallel
structure and amenable for the development of parallel
algorithms on various interconnection networks.

A. Running Time

We know for graph),,(wEVG  , the Boruvka,s algorithm

in each step reduces the number of vertices to half. After

Step 1 the number of vertices of the resulting graph is 2/V ,

and finding light edges across V - vertices inspects the

adjacent list of V .

The cost incurred at this step 




Vv

EOEOv)()2()deg(.

In Step 2 the number of vertices reduces to 22/V , and the

cost for finding light edges across 2/V vertices is)(EO . If

we stops at k-th step, then the number of vertices at this step

is at most 02/ nV k  and the cost for finding light edges is

also)(EO .

Now 02/ nV k 

0/2 nVk 

)/(log 02 nVk 

In the above algorithm one can obtain super vertices for
G invoking connected component algorithm i.e. depth first

search, in)(EVO  time. As))/log((0nVEO dominate

)(EVO  , thus the running time for obtaining multigraph

),(''' EVG  of step 2 is)())/log((0 EVOnVEO 

))/(log(02 nVEO (1.1)

Then running Prim’s algorithm on 'G to get MST 'T using

Fibonacci heap at final phase of Step 2 takes

)log(''' VVEO  time. (1.2)

Adding (1.1) and (1.2), the total running time of the
proposed algorithm is

)log)/(log('''
02 VVEnVEO  (1.3)

Theorem 1

If RT(Krusksl’s), RT(Boruvka’s), RT(Prim’s) and
RT(Proposed) be runtimes of Kruskal’s, Boruvka’s, Prim’s
and Proposed algorithms. Then
i) For dense graph

RT(Prim’s)  RT(Proposed)  RT(Boruvka’s) 
RT(Krusksl’s).

ii) For sparse graph
RT(Krusksl’s)  RT(Boruvka’s)  RT(Proposed)
 RT(Prim’s).

Proof

For graph),,(wEVG 

RT(Prim’s) =)log(2 VVEO 

RT(Krusksl’s) =)log(2 EEO

RT(Boruvka’s) =)log(VEO and

RT(Proposed) =)log)/(log('''
02 VVEnVEO  .

Without loss of generality let us assume 2/0 Vn 

2/0
' VnVV 

Thus RT(Proposed) =))2/(log)2/((2
' VVEEO  .

i) For dense graph 2VE 

Thus RT(Prim’s) =)log(2
2 VVVO 

IJASCSE, Volume 2, Issue 5, 2013

www.ijascse.org Page 10

Oct. 31

RT(Krusksl’s) =)log2(2
2 VVO

RT(Boruvka’s) =)log(2 VVO

RT(Proposed) =)log)/(log(''2'
02

2 VVVnVVO 

Clearly RT(Prim’s)  RT(Boruvka’s) RT(Krusksl’s) (1.4)
Note that the second part of inequality becomes equality is
asymptotic sense if we take finding light edge of Boruvka

incurred cost 222)(VEEO  . In the proposed algorithm

up to 0n - super vertices Prim’s algorithm is used.

Thus RT(Boruvka’s) = RT(Boruvka’s till number of super

vertices equals 0n) + RT(Boruvka’s on 0nV  vertices) 

RT(Boruvka till number of super vertices equals 0n) +

RT(Prim’s on 0nV  super vertices) ( RT(Prim’s) 

RT(Boruvka’s))

 RT(Prim’s on 0n vertices) + RT(Prim’s on 0nV 

vertices)  RT(Prim’s)
 RT(Boruvka’s)  RT(Proposed)  RT(Prim’s) (1.5)
From (1.4) and (1.5) we have
RT(Prim’s)  RT(Proposed)  RT(Boruvka’s) 
RT(Krusksl’s)
Hence prove.
ii) For sparse graph VE 

Thus RT(Prim’s) =)log(2 VVVO 

RT(Krusksl’s) =)log(2 VVO

RT(Boruvka’s) =)log(VVO and

RT(Proposed) =)log)/(log('''
02 VVVnVVO  .

Clearly RT(Krusksl’s)  RT(Boruvka’s)  RT(Prim’s).
Note that for the first part of the inequality is strict if we

take finding light edges cost in each step

)2()(2 VOEOE  instead of simply)(VO .

Again by the same arguments as in the Proof of (i), we
have

RT(Proposed) = RT(Boruvka’s on 0n vertices)+

RT(Prim’s on 0nV  vertices)

 RT(Prim’s on 0n vertices)+ RT(Prim’s on 0nV 

vertices)
= RT(Prim’s on V vertices) (1.6)

Again RT(Proposed) = RT(Boruvka’s on 0n vertices)+

RT(Prim’s on 0nV  vertices)

 RT(Boruvka’s on 0n vertices)+RT(Boruvka’s on 0nV 

vertices)
 RT(Proposed)  RT(Boruvka’s on V vertices) (1.7)

From (1.6) and (1.7)
RT(Krusksl’s)  RT(Boruvka’s)  RT(Proposed) 
RT(Prim’s).
Thus the Proof of (ii) follows.
Thus the proposed algorithm is a compromise between
Kruskal’s and Prim’s algorithm.

For the following graph (Figure 1), the working of the
algorithm is explained. The numeric values across the edges
represent weights.

Figure 1. Weighted Graph

Step 1: At this step the light edges of vertices are selected.
The selected edges are labeled with arrows. An edge with
double arrows indicates this edge is chosen by both end
vertices. Broken lines are the edge not selected in Step 1.
Refer following Figure 2.

Figure 2. Light edge of Graph

After Step 1 we have two connected components 1C , 2C

and the following multi-graph. In the Figure 3 the connected

components 1C and 2C are relabeled by super vertices sV1

and sV2 . We will stop applying further iterations of

Boruvka’s algorithm assuming the number of super vertices

20 n .

sVC 11  sVC 22 

Figure 3. Multi graph with two super vertices
sV1 and

sV2 .

V1

7

3 V6

1

V5

2 6

5
V4

V3 1

1

V2

2

2

7

3 V6

1

V5

6
2

V2 5 V4

V3 1

1

V1

1

7

3
V6

V5

2 6
2

V2 5 V4

V3 1

1

V1

IJASCSE, Volume 2, Issue 5, 2013

www.ijascse.org Page 11

Oct. 31

Step 2: Now we will apply Prim’s algorithm to find the

MST of the above multi graph. In the graph we have three

parallel edges 53 ,VV : cost = 7, 43 ,VV : cost = 6 and

42 ,VV : cost = 5 running from sV1 to sV2 .

Choosing minimum edge 42 ,VV : cost = 5, connecting

sV1 to sV2 . We have the following spanning tree T  of super

vertices sV1 and sV2 .

Figure 4. 2-Clustered vertices with a single edge

Step 3: After unclustering the super vertices the required
MST is as follows.

Figure 5. Final Minimum Spanning Tree

IV. PARALLEL FORMULATION OF THE NEW ALGORITHM

In this section we present a parallel algorithm for the
proposed minimum spanning tree in shared memory using
FAL data structure discussed in [1]. Here we have used
Boruvka’s and Prim’s algorithm using FAL data structure.
As we are using major portion of MST generation using
Boruvka’s algorithm, in our parallel formulation processors
run Step 1 and Step 2 of Algorithm 4 (Section 3) on different
set of vertices simultaneously.

We say a tree is growing when there exists a light weight
edge that connects a tree to a vertex not yet in another tree,
and mature otherwise. When all of the vertices (dedicated for
a processor) have been incorporated into mature subtrees, we
contract each subtree into a super vertex (Step 2 of
Algorithm 4) and call Step 1 and Step 2 recursively on

resulting multi-graph until a multi-graph of small enough
size is obtained. When the multi-graph size is small enough,
one of the processors executes sequential Prim’s algorithm
(Step 3 of Algorithm 4) to find MST of the finest multi-
graph. Then the super vertices are unclustered to find the
MST of the original graph. The description of our parallel
formulation is given in Algorithm 5.

The graph shown in figure 6 and the table I depicts the

running time of Kruskal’s, Boruvka’s and proposed
algorithms for various graphs order. In the graph, vertices are
taken along x-axis and the corresponding runtimes for these
three algorithms are taken along y-axis.

TABLE I. COMPARISION OF RUNNING TIME

V Kruskal’s Brouvka’s Proposed

2
2
 64 32 40

2
3
 384 192 152

2
4
 2048 1024 600

2
5
 10240 5120 2560

Figure 6. Running Times of Kruskal’s, Boruvka’s and Proposed

From the graph it is clear that the proposed algorithm
runtime reduces as oppose to both Boruvka’s and Kruskal’s
algorithm as the number of vertices of the graph increases.

Algorithm 5

Input: Graph),,(wEVG  denoted by adjacency list A

with Vn  , 0n be the base problem size of the multi-graph

to be solved by Prim’s sequential algorithm (Step 3).
Output: MST for G

1. while)(0nn 

2. initialize the color and visited arrays

3. for 









p

n
iv to 








 1)1(

p

n
i

3
V6

1

V5

2 2

V2 5 V4

V3 1

1

V1

V6

1

V5

2

V2 5 V4

V3 1

1

V1

IJASCSE, Volume 2, Issue 5, 2013

www.ijascse.org Page 12

Oct. 31

4. do color[v] = 0 visited [v] = 0
5. Run Algorithm- Boruvka’s [2]

6. for 









p

n
iv to 








 1)1(

p

n
i

7. if visited[v] = 0 then find the lightest incident
edge e to v , and label e to be in the MST.

8. With found MST edges, run connected
component algorithm on the induced graph,
and shrink each component into a super-
vertex.

9. Set n the number of remaining super

vertices.
10. m the number of edges among n - super

vertices
11. //end while

12. If)(0nn 

13. Solve the remaining multi-graph with n - super

vertices and m - edges by sequential Prim’s

algorithm using one of the three processors.

A. Parallel Runtime

Let P be the number of processors used by Algorithm 5.
After Step 12 of the Algorithm 5. Let P be the number of
processors used by Algorithm 5. After Step 10, let

),(EVG  be the multi-graph with 0nV  super vertices

and mE  edges obtained from),(EVG  . As Boruvka’s

Flexible Adjacent List (FAL) [1] greatly reduces execution
time of experiments over Bor-AL and Bor-EL. Using
Flexible Adjacent List data structure (FAL), each processor,
finds connected components of G at Step 8 in time Tcc

given by








 


p

vvvv
OTcc

)lg()(
.

Boruvka’s algorithm used by Step 2 runs in 








p

VE
O

lg

times. Further Step 13 takes time










Heap)Binary (Using lglg

Heap) Fibonacci (Using lg
)1(

VVVE

VVE
O

Thus the total complexity of the parallel algorithm PRT

(P) is given by





















 lglg
)lg()lg(

 lg
)lg()lg(

)1()(

VVVE
p

VVVE

VVE
p

VVVE

OPPRT




















 








 



Heap)(Binary lg)()lg(

Heap) (Fibonacci lg)lg(

)1(

VVEV
p

VE

VVEV
p

VE

O

































Heap)Binary (Using lg)(
lg

Heap) Fibonacci (Using lg
lg

)1(

VVE
p

VE

VVE
p

VE

O











p

VE
O

lg
)1(

V. CONCLUSIONS

This paper discusses a new algorithm for finding minimum
spanning tree of a weighted graph which is intrinsically
parallel, unlike Kruskal’s algorithm. As far as the running
time of the algorithm is concerned, it is faster than both
Kruskal’s and Boruvka’s algorithms. However the Prim’s
algorithm is bit faster than ours algorithm. The parallel
implementation of the proposed algorithm in shared memory
is also better than Boruvka’s parallel algorithm, but
comparable with Prim’s parallel algorithm due to Bader et al.

REFERENCES

[1] Bader, D.A.; Guojing Cong, "Fast shared-memory algorithms for
computing the minimum spanning forest of sparse graphs," Journal
of Parallel and Distributed Computing, vol.66, no.11, pp.1366-1378,
Nov 2006

[2] Chen, C.; Morris, S., "Visualizing evolving networks: minimum
spanning trees versus pathfinder networks," Information
Visualization, 2003. INFOVIS 2003. IEEE Symposium on, vol., no.,
pp.67,74, 21-21 Oct. 2003

[3] Chong, Ka Wong; Han, Yijie; Igarashi, Yoshihide; Lam, Tak Wah,
“Improving the Efficiency of Parallel Minimum Spanning Tree
Algorithms”, Discrete Applied Mathematics-DAM, vol.126, no.1,
pp.33-54, 2003

[4] Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.,
“Introduction to Algorithms”, MIT Press, Cambridge, MA. 2001

[5] Karypis, G.; Grama, A.; Gupta, A.; Kumar, V., “Introduction to
Parallel Computing”, Addison Wesley, second edition, 2003

[6] Miller, G.L.; Ramachandran, V., “Efficient parallel ear
decomposition with applications”, Manuscript, UC Berkeley, MSRI,
January 1986.

[7] Moret, Bernard M.E.; Shapiro, Henry D., “An empirical assessment
of algorithms for constructing a minimal spanning tree”, DIMACS
Series in Discrete Mathematics and Theoretical Computer Science,
vol. 15, pp. 99–117, 1994

[8] Otakar Borůvka. O jistem problem minimalnim (About a certain
minimal problem). Prace mor. Přirodověd. Spol. v Brně (Acta Societ.
Scient. Natur. Moravicae), 3: pp.37–58, 1926

[9] Setia, R.; Nedunchezhian, A.; Balachandran, S., “A New Parallel
Algorithm for Minimum Spanning Tree Problem”, International
Conference on High Performance Computing (HiPC), Dec 16-19,
2009

IJASCSE, Volume 2, Issue 5, 2013

www.ijascse.org Page 13

Oct. 31

[10] Sun Chung; Condon, A., "Parallel implementation of Bouvka's
minimum spanning tree algorithm," Parallel Processing Symposium,

1996., Proceedings of IPPS '96, The 10th International , vol., no.,
pp.302,308, 15-19 Apr 1996

[11] Tarjan, R.E.; Vishkin, U., “An efficient parallel biconnectivity
algorithm”, SIAM Journal on Computing, vol.14, pp.862–874, 1985

