
IJASCSE, Volume 2, Issue 5, 2013 
 

www.ijascse.org Page 7 
 

Oct. 31 

A New Parallel Algorithm for Minimum Spanning 

Tree(MST)  

Alok Ranjan Tripathy 

Department of Computer Science & Engineering  

College of Engineering Bhubaneswar 

Bhubaneswar, India 

 

 

 

B. N. B. Ray 

Department of Computer Science & Application 

Utkal University, Vani Vihar  

Bhubaneswar, India 

 

Abstract— This paper proposes a new algorithm for finding 

minimum spanning tree (MST) of a weighted graph which is 

intrinsically parallel, unlike Kruskal’s algorithm. As far as the 

running time of the algorithm is concerned, it is faster than 

both Kruskal’s and Boruvka’s algorithms. However the Prim’s 

algorithm is bit faster than the proposed algorithm. The 

parallel implementation of the proposed algorithm in shared 

memory is also better than Boruvka’s parallel algorithm, but 

comparable with Prim’s parallel algorithm. 
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I.  INTRODUCTION 

The minimum spanning tree problem (MST) for a 
weighted graph is defined as follows: 

Given a directed connected graph ),,( wEVG  . V : Set 

of vertices, E : Set of edges and RVVw :  weight 

function. The minimum spanning tree problem is to find a 
spanning tree with minimum total weight. The MST problem 
has applications in combinatorial problems with practical 
applications in VLSI layout, wireless communication, 
medical imaging [8], chemical warfare [2], graph steiner tree 
problem and many other graph theoretical applications [6, 7, 
11]. There exist serial and parallel algorithms for MST. The 
earliest serial algorithm for finding MST was due to Boruvka 
[8]. This algorithm has parallel structure which can be 
parallelized easily. Other two frequently used MST are 
Kruskal algorithm and Prim’s algorithm [4]. They are 
difficult to parallelize. Because of intrinsic parallel nature 
many parallel formulation of Boruvka’s are available in 
literature.  

 
These include Chung et al. [10] and Chong et al. [3]. 

Recently a hybrid approach of Prim’s and Boruvka was used 
by Bader et al. in [5]. In [1,5] many parallel variants of 
Prim’s algorithm are discussed. 

 
The Parallel MST due to R. Setia et al. [9] was 

implemented using threads and posix signal. They used cut 
property of the graph to grow the tree by multiple threads 
and finally trees were merged when they collide. The parallel 
formulation of Boruvka uses a pointer jumping algorithm 
[10] for forming connected components which is bit 
complex. Bader et al. [5] implemented parallel Prim’s 

algorithm in shared memory using multiple cores. They used 
flexible adjacency list data structure which is simpler than 
pointer jumping algorithm of Boruvka’s algorithm discusses 
in [10]. From this study it appears that there is a gap between 
the runtime of Boruvka’s and Prim’s algorithm. Boruvka’s 
algorithm has more parallel structure than Prim’s algorithm 
at the cost of slower runtimes. 

 
However for large scale graphs MST problem parallel 

implementations is an obvious choice. Thus there is a need to 
develop parallel MST algorithms having intrinsic parallel 
structure like Boruvka’s algorithm and runtimes comparable 
with Prim’s algorithm. To this end a new MST is proposed, 
which is faster than both Kruskal’s and Boruvka’s algorithm 
but bit slower than Prim’s algorithm. In short our 
contributions are as follows: 

 

 Developed a new sequential algorithm for solving 

MST problem of  a graph. 

 Parallelized the new algorithm in shared memory 
architecture. 

 Compared the Running Time (RT) of new 
sequential algorithm with sequential Prim’s and 
Kruskal’s and Boruvka’s algorithms for both sparse 
and dense graphs. The runtime of the proposed 
algorithm is better than both Krushkal’s and 
Boruvka’s algorithms but higher than Prim’s 
algorithm. However proposed algorithm has more 
parallel structure than Prim’s algorithm and is 
amenable for achieving high degree of parallelism 
for large scale weighted graphs.  

 Studied the runtime of new sequential parallel 
algorithm. 

 
The rest of the paper is organized as follows: 
 
Section II reviews the necessary back ground. Section III 
presents our proposed sequential and parallel MST 
algorithms. Section IV discusses the parallel formulation of 
the new algorithm. Finally conclusions are offered in Section 
V. 
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II. BACKGROUND 

This section present some commonly used sequential 
MST algorithms for weighted graphs.  

A. Boruvka’s Algorithm [10] 

This algorithm also known as Sollin’s algorithm which 
constructs a minimum spanning tree iteratively using 
following steps: 
Algorithm 1 

Step 1 (Choose lightest): Each vertex selects the edge 
with the lightest weight incident on it. Each of the connected 
components thus created has one cycle of size two between 
two vertices that each selects the same edge. Of this pain, the 
one with the smaller number is designated as the root of the 
component and the cycle is removed. The component is then 
a tree. 

Step 2 (Find root): Each vertex identifies the root of the 
tree to which it belongs. 

Step 3 (Rename vertices): In the edge lists, each vertex is 
renamed with the name of the root of the component to 
which it belongs. 

Step 4 (Merge edge lists): Edge lists, which belong to the 
same component, are merged into the edge list of the root. In 
other words, each connected component shrinks into a single 
vertex. 

Step 5 (Clean up): Now the edge lists may have self loops 
and multiple edges. All self loops are removed. Multiple 
edges are removed such that only lightest edge remains 
between a pair of vertices. 

 
In Boruvka’s algorithm the ith iteration is an input to 

(i+1)st iteration, unless it has just one vertex in which case it 
halts. The output spanning tree is the union of the set of 
edges selected in Step 1, taken over all iterations. The 
components formed in all iteration can be implemented using 
depth first search in )( EVO   time. As the number of 

vertices at the (i+1)st iteration is at most half of the number 
of vertices at the ith iteration. The number of iterations of 

Boruvka’s algorithm is atmost n2log . Thus the total running 

time of Boruvka’s algorithm is  

)log()()log( VEOVEOVEO  . Its parallel 

implementation in shared memory with p processor is given 

by 








p

VE
O

lg
  [1]. 

B. Prim’s Algorithm [4] 

Prim’s algorithm grows minimum spanning tree of a 

weighted graph ),,( wEVG   from an arbitrary vertex ‘r’ as 

root. Following notations are used in Prim’s algorithm.  

For Vu , with ][ ukey : key associated with u . 

][ u : Key associated with parent of u . 

Q : Priority Queue keyed with key value ][ ukey , Vu  . 

][ uadj : Adjacent list of u . 

 ),( vuw : Weight of the edge Evu ),( . 

The steps of the Prim’s algorithm are as follows. 

Algorithm 2 

MST-PRIM ),,( rwG  

1. For each ][GVu   

2.        do ][ ukey  

3.            NILu ][   

4. 0][ rkey  

5. ][GVQ  

6. while Q  

7.       do )MIN(-EXTRACT Qu   

8.              for each ][ uAdjv  

9.                     do if Qv  and ][),( vkeyvuw   

10.                           then uv ][     

11.                                  ),(][ vuwvkey   

The running time of the Prim’s algorithm is 

)loglog( 22 VEVVO   and )log( 2 VVEO   using Binary 

and Fibonacci heaps respectively. Recently Bader et al. [1] 
gave a parallel Prim’s algorithm in shared memory with p 

processors, whose running time is 








p

VE
O

log
. Though this 

parallel runtime is asymptotically same with Boruvka’s 
parallel runtime, but experimentally using a new data 
structure call flexible adjacent list (FAL), they found that the 
performance of Prim’s using FAL was better than Boruvka,s 
parallel algorithm, where as parallel Boruvka discussed in 
[1] uses adjacency list representation of the graph.  

C. Kruskal’s Algorithm [4] 

It finds a safe edge to add to the growing forest by 
finding, of all the edges that connect any two trees in the 

forest, an edge ),( vu  of least weight. It uses a disjoint-set 

data structure to maintain several disjoint sets of elements. 
Each set contains the vertices in a tree of the current forest. 
The operation )(SET-FIND u  returns a representative 

element from the set that contains u . Thus, we can 

determine whether two vertices u  and v  belong to the same 

tree by testing whether )(SET-FIND u  equals 

)(SET-FIND v . The combining of trees is accomplished by 

the UNION procedure. 

Algorithm 3 

MST-KRUSKAL ),( wG  

1. A  
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2. for each vertex ][GVv  

3.         do MAKE-SET )(v  

4. Sort the edges of E  into nondecreasing order by 

weight w  

5. for each edge Evu ),( , taken in nondecreasing order 

by weight 

6.         do if )SET(-FIND)(SET-FIND vu   

7.                   then )},{( vuAA   

8.                            UNION ),( vu  

9. return  A  

The running time of Kruskal’s algorithm is )log( 2 EEO .  

III. PROPOSED MINIMUM SPANNING TREE (MST) 

ALGORITHM.  

In this section we present a new sequential algorithm for 
finding the minimum spanning tree of a connected graph 

),,( wEVG  . Then we discuss its runtime with the runtimes 

of Kruskal’s, Prim’s and Boruvka’s algorithms 

Algorithm 4  

1. The proposed algorithm takes the input graph G  and 

keeps on applying Boruvka’s algorithm’s Step 1 
through Step 3 recursively till the number of super 

vertices reduces to a threshold value 20 n .   

2. For 20 n , let ),( ''' EVG   be the multi graph 

resulting from  Step 1, Where   0
' nV  .  Then 

apply sequential Prim’s algorithm to  'G  to get MST 
'T  of G .  Note that the vertices of  'T  are super 

vertices of G . 

3. In order to obtain the MST of G , just uncluster the 

vertices  of 'T  until their sizes reduces to one. 
 
Since in the proposed algorithm Step 1 and Step 2 are 

called recursively and they are independent steps of 
Brouvaka’s algorithm, so they can be easily parallelized in 
multiprocessor system whereas the parallelization of Step 3 
is of no interest as it is executed only once on limited number 
of super vertices of multi graph in the life time of the 
algorithm. Thus unlike classical Prim’s and Kruskal’s 
algorithms, our sequential algorithm has more parallel 
structure and amenable for the development of parallel 
algorithms on various interconnection networks. 

A. Running Time 

We know for graph ),,( wEVG  , the Boruvka,s algorithm 

in each step reduces the number of vertices to half. After 

Step 1 the number of vertices of the resulting graph is 2/V , 

and finding light edges across V - vertices inspects the 

adjacent list of V . 

The cost incurred at this step 




Vv

EOEOv )()2()deg( . 

In Step 2 the number of vertices reduces to 22/V , and the 

cost for finding light edges across 2/V  vertices is )(EO . If 

we stops at k-th step, then the number of vertices at this step 

is at most 02/ nV k   and the cost for finding light edges is 

also )(EO . 

Now 02/ nV k   

0/2 nVk   

)/(log 02 nVk   

In the above algorithm one can obtain super vertices for 
G  invoking connected component algorithm i.e. depth first 

search, in )( EVO   time. As ))/log(( 0nVEO  dominate 

)( EVO  , thus the running time for obtaining multigraph 

),( ''' EVG   of step 2 is )())/log(( 0 EVOnVEO   

))/(log( 02 nVEO                     (1.1) 

Then running Prim’s algorithm on 'G  to get MST 'T  using 

Fibonacci heap at final phase of Step 2 takes 

)log( ''' VVEO   time.                                  (1.2) 

Adding (1.1) and (1.2), the total running time of the 
proposed algorithm is  

)log)/(log( '''
02 VVEnVEO                                   (1.3) 

Theorem 1 

If RT(Krusksl’s), RT(Boruvka’s), RT(Prim’s) and 
RT(Proposed) be runtimes of Kruskal’s, Boruvka’s, Prim’s 
and Proposed algorithms. Then  
i) For dense graph 

RT(Prim’s)   RT(Proposed)   RT(Boruvka’s)   
RT(Krusksl’s). 

ii) For sparse graph 
RT(Krusksl’s)   RT(Boruvka’s)   RT(Proposed) 
  RT(Prim’s). 

Proof 

For graph ),,( wEVG    

RT(Prim’s) = )log( 2 VVEO    

RT(Krusksl’s) = )log( 2 EEO   

RT(Boruvka’s) = )log( VEO  and  

RT(Proposed) = )log)/(log( '''
02 VVEnVEO  . 

Without loss of generality let us assume 2/0 Vn   

2/0
' VnVV   

Thus RT(Proposed) = ))2/(log  )2/(( 2
' VVEEO  . 

i) For dense graph 2VE   

Thus RT(Prim’s) = )log( 2
2 VVVO   
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RT(Krusksl’s) = )log2( 2
2 VVO  

RT(Boruvka’s) = )log( 2 VVO  

RT(Proposed) = )log)/(log( ''2'
02

2 VVVnVVO   

Clearly RT(Prim’s)   RT(Boruvka’s) RT(Krusksl’s) (1.4) 
Note that the second part of inequality becomes equality is 
asymptotic sense if we take finding light edge of Boruvka 

incurred cost 222)( VEEO  . In the proposed algorithm 

up to 0n - super vertices Prim’s algorithm is used. 

Thus RT(Boruvka’s) = RT(Boruvka’s till number of super 

vertices equals 0n ) + RT(Boruvka’s on 0nV   vertices)   

RT(Boruvka till number of super vertices equals 0n ) + 

RT(Prim’s on 0nV   super vertices) (  RT(Prim’s)   

RT(Boruvka’s)) 

  RT(Prim’s on 0n  vertices) + RT(Prim’s on 0nV   

vertices)    RT(Prim’s) 
 RT(Boruvka’s)   RT(Proposed)   RT(Prim’s)    (1.5) 
From (1.4) and (1.5) we have 
RT(Prim’s)   RT(Proposed)   RT(Boruvka’s)   
RT(Krusksl’s)    
Hence prove. 
ii) For sparse graph VE   

Thus RT(Prim’s) = )log( 2 VVVO   

RT(Krusksl’s) = )log( 2 VVO  

RT(Boruvka’s) = )log( VVO  and  

RT(Proposed) = )log)/(log( '''
02 VVVnVVO  . 

Clearly RT(Krusksl’s)   RT(Boruvka’s)   RT(Prim’s). 
Note that for the first part of the inequality is strict if we 

take finding light edges cost in each step 

)2()(2 VOEOE   instead of simply )(VO . 

Again by the same arguments as in the Proof of (i), we 
have 

RT(Proposed) = RT(Boruvka’s on 0n  vertices)+ 

RT(Prim’s on 0nV   vertices) 

  RT(Prim’s on 0n  vertices)+ RT(Prim’s on 0nV   

vertices) 
= RT(Prim’s on V  vertices)                     (1.6) 

Again RT(Proposed) = RT(Boruvka’s on 0n  vertices)+ 

RT(Prim’s on 0nV   vertices) 

  RT(Boruvka’s on 0n  vertices)+RT(Boruvka’s on 0nV   

vertices) 
  RT(Proposed)   RT(Boruvka’s on V  vertices)    (1.7) 

From (1.6) and (1.7)  
RT(Krusksl’s)   RT(Boruvka’s)   RT(Proposed)   
RT(Prim’s). 
Thus the Proof of (ii) follows. 
Thus the proposed algorithm is a compromise between 
Kruskal’s and Prim’s algorithm. 

 

For the following graph (Figure 1), the working of the 
algorithm is explained. The numeric values across the edges 
represent weights. 

 
 
 
 
 
 
 
 
   

 

Figure 1. Weighted Graph 

Step 1: At this step the light edges of vertices are selected. 
The selected edges are labeled with arrows. An edge with 
double arrows indicates this edge is chosen by both end 
vertices. Broken lines are the edge not selected in Step 1. 
Refer following Figure 2. 

 
 

 

 

 

 

Figure 2. Light edge of Graph 

After Step 1 we have two connected components 1C , 2C  

and the following multi-graph. In the Figure 3 the connected 

components  1C  and 2C  are relabeled by super vertices sV1  

and sV2 . We will stop applying further iterations of 

Boruvka’s algorithm assuming the number of super vertices 

20 n . 

 
 
 
 
 
 
 
 
 
 
 
 

sVC 11                                           sVC 22   

Figure 3. Multi graph with two super vertices 
sV1  and 

sV2 . 
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Step 2: Now we will apply Prim’s algorithm to find the 

MST of the above multi graph. In the graph we have three 

parallel edges 53 ,VV : cost = 7,  43 ,VV : cost = 6 and 

42 ,VV : cost = 5 running from  sV1  to sV2 .  

Choosing minimum edge 42 ,VV : cost = 5, connecting 

sV1  to sV2 . We have the following spanning tree T   of super 

vertices sV1  and sV2 . 

 
 
 
 
 
 
 

 
 
 

 
 

 

Figure 4.   2-Clustered vertices with a single edge 

Step 3: After unclustering the super vertices the required 
MST is as follows. 

 
 
 
 
 
 
 
 
 

 

Figure 5. Final Minimum Spanning Tree 

IV. PARALLEL FORMULATION OF THE NEW ALGORITHM                                                   

In this section we present a parallel algorithm for the 
proposed minimum spanning tree in shared memory using 
FAL data structure discussed in [1]. Here we have used 
Boruvka’s and Prim’s algorithm using FAL data structure. 
As we are using major portion of MST generation using 
Boruvka’s algorithm, in our parallel formulation processors 
run Step 1 and Step 2 of Algorithm 4 (Section 3) on different 
set of vertices simultaneously.  

We say a tree is growing when there exists a light weight 
edge that connects a tree to a vertex not yet in another tree, 
and mature otherwise. When all of the vertices (dedicated for 
a processor) have been incorporated into mature subtrees, we 
contract each subtree into a super vertex (Step 2 of 
Algorithm 4) and call Step 1 and Step 2 recursively on 

resulting multi-graph until a multi-graph of small enough 
size is obtained. When the multi-graph size is small enough, 
one of the processors executes sequential Prim’s algorithm 
(Step 3 of Algorithm 4) to find MST of the finest multi-
graph. Then the super vertices are unclustered to find the 
MST of the original graph. The description of our parallel 
formulation is given in Algorithm 5. 

 
The graph shown in figure 6  and the table I depicts the 

running time of Kruskal’s, Boruvka’s and proposed 
algorithms for various graphs order. In the graph, vertices are 
taken along x-axis and the corresponding runtimes for these 
three algorithms are taken along y-axis.  

TABLE I.  COMPARISION OF RUNNING TIME 

V Kruskal’s Brouvka’s Proposed 

2
2
 64 32 40 

2
3
 384 192 152 

2
4
 2048 1024 600 

2
5
 10240 5120 2560 

 
 

 
Figure 6. Running Times of Kruskal’s, Boruvka’s and Proposed  

From the graph it is clear that the proposed algorithm 
runtime reduces as oppose to both Boruvka’s and Kruskal’s 
algorithm as the number of vertices of the graph increases. 

 

Algorithm 5 

Input: Graph ),,( wEVG   denoted by adjacency list A  

with Vn  , 0n  be the base problem size of the multi-graph 

to be solved by Prim’s sequential algorithm (Step 3). 
Output:  MST for G  

1. while )( 0nn   

2.       initialize the color and visited arrays  

3.       for 









p

n
iv  to 








 1)1(

p

n
i   

3 
V6 

1 

V5 

2 2 

V2 5 V4 

V3 1 

1 

V1 

V6 

1 

V5 

2 

V2 5 V4 

V3 1 

1 

V1 
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4.       do color[v] = 0 visited [v] = 0 
5.       Run Algorithm- Boruvka’s [2] 

6.        for 









p

n
iv  to 








 1)1(

p

n
i  

7.      if visited[v] = 0 then find the lightest incident     
edge e  to v , and label e  to be in the MST. 

8.        With found MST edges, run connected 
component algorithm on the induced graph, 
and shrink each component into a super-
vertex. 

9.         Set n  the number of remaining super    

vertices. 
10.         m  the number of edges among n - super 

vertices 
11. //end while 

12. If )( 0nn   

13. Solve the remaining multi-graph with n - super 

vertices and m - edges by sequential Prim’s 

algorithm using one of the three processors. 

A. Parallel Runtime 

Let P  be the number of processors used by Algorithm 5.  
After Step 12 of the Algorithm 5. Let P  be the number of 
processors used by Algorithm 5. After Step 10, let 

),( EVG   be the multi-graph with 0nV   super vertices 

and mE   edges obtained from ),( EVG  . As Boruvka’s 

Flexible Adjacent List (FAL) [1] greatly reduces execution 
time of experiments over Bor-AL and Bor-EL. Using 
Flexible Adjacent List data structure (FAL), each processor, 
finds connected components of G at Step 8 in time  Tcc  

given by 
 








 


p

vvvv
OTcc

)lg()(
. 

 

Boruvka’s algorithm used by Step 2 runs in 








p

VE
O

lg
 

times. Further Step 13 takes time  
 










Heap)Binary  (Using         lglg

Heap) Fibonacci (Using                lg
)1(

VVVE

VVE
O  

 
Thus the total complexity of the parallel algorithm PRT 

(P) is given by  
 





















  lglg
)lg()lg(

     lg
)lg()lg(

)1()(

VVVE
p

VVVE

VVE
p

VVVE

OPPRT  




















 








 



Heap)(Binary  lg)()lg(

Heap) (Fibonacci  lg)lg(

)1(

VVEV
p

VE

VVEV
p

VE

O  

 

































Heap)Binary  (Using   lg)(
lg

Heap) Fibonacci (Using     lg
lg

)1(

VVE
p

VE

VVE
p

VE

O

 
 











p

VE
O

lg
)1(  

V. CONCLUSIONS 

This paper discusses a new algorithm for finding minimum 
spanning tree of a weighted graph which is intrinsically 
parallel, unlike Kruskal’s algorithm. As far as the running 
time of the algorithm is concerned, it is faster than both 
Kruskal’s and Boruvka’s algorithms. However the Prim’s 
algorithm is bit faster than ours algorithm. The parallel 
implementation of the proposed algorithm in shared memory 
is also better than Boruvka’s parallel algorithm, but 
comparable with Prim’s parallel algorithm due to Bader et al. 
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